1
|
Yang X, Chen Q, Jiang Z, Chen W, Cui T, Wu B, Li H, Qiu R. Mycorrhizal fungi drive Cd and P allocation strategies for the co-planting system of hyperaccumulator S. nigrum and upland rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126382. [PMID: 40334734 DOI: 10.1016/j.envpol.2025.126382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/13/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) enhance the remediation potential of hyperaccumulator-crop co-planting systems, yet the mechanisms governing cadmium (Cd) and phosphorus (P) allocation remain unclear. To investigate these strategies, pot experiments were conducted using Cd-contaminated soil (1.0 mg·kg-1 Cd) where the Cd hyperaccumulator Solanum nigrum (S. nigrum) was intercropped with upland rice under Funneliformis mosseae inoculation. Rhizospheric GRSP content, Cd/P allocation patterns, and microbial community structure were analyzed using in situ analysis using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), sequential chemical extraction, and 16S rRNA sequencing. Results showed that AMF increased total Cd accumulation in S. nigrum shoots by 25.37% while reducing Cd uptake in rice shoots and roots by 45.18% and 55.54%, respectively. AMF also enhanced the P uptake rate of S. nigrum by 1.76 times compared to non-inoculated conditions, thereby increasing the total P accumulation in S. nigrum by 25.62% under Cd stress. Conversely, AMF negatively impacted the P content and total P accumulation in neighboring rice. Rhizospheric GRSP content increased significantly, indicating AMF's role in reducing Cd availability for rice. In situ analysis of LA-ICP-MS confirmed lower Cd content in rice rhizosphere and root surfaces, with minimal effects on S. nigrum. Lower DTPA-Cd concentrations in the rhizosphere of intercropped rice further substantiated the mycorrhizal Cd-blocking effects of AMF. Furthermore, AMF inoculation was the principal factor influencing alterations in the bacterial community structure within the intercropping system, by increasing the abundance of phosphate-solubilizing bacteria (mainly Ramlibacter, Roseisolibacter, and Bacillus) in the rhizosphere. AMF reduced the relative abundance of metal-tolerant bacteria (primarily Flavisolibacter) in the S. nigrum rhizosphere while enhancing their presence in the rice rhizosphere. This work revealed the resource acquisition effect (especially P uptake) of AMF on S. nigrum, thereby promoting Cd uptake and its preferential strengthening of the Cd-defending effect of the intercropped rice.
Collapse
Affiliation(s)
- Xu Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qiuyu Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuomin Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wenzhen Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Tuantuan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Bohan Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huashou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture / Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Wani AK, Qadir F, Elboughdiri N, Rahayu F, Saefudin, Pranowo D, Martasari C, Kosmiatin M, Suhara C, Sudaryono T, Prayogo Y, Yadav KK, Muzammil K, Eltayeb LB, Alreshidi MA, Singh R. Metagenomics and plant-microbe symbioses: Microbial community dynamics, functional roles in carbon sequestration, nitrogen transformation, sulfur and phosphorus mobilization for sustainable soil health. Biotechnol Adv 2025; 82:108580. [PMID: 40246210 DOI: 10.1016/j.biotechadv.2025.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Biogeochemical cycles are fundamental processes that regulate the flow of essential elements such as carbon, nitrogen, and phosphorus, sustaining ecosystem productivity and global biogeochemical equilibrium. These cycles are intricately influenced by plant-microbe symbioses, which facilitate nutrient acquisition, organic matter decomposition, and the transformation of soil nutrients. Through mutualistic interactions, plants and microbes co-regulate nutrient availability and promote ecosystem resilience, especially under environmental stress. Metagenomics has emerged as a transformative tool for deciphering the complex microbial communities and functional genes driving these cycles. By enabling the high-throughput sequencing and annotation of microbial genomes, metagenomics provides unparalleled insights into the taxonomic diversity, metabolic potential, and functional pathways underlying microbial contributions to biogeochemical processes. Unlike previous reviews, this work integrates recent advancements in metagenomics with complementary omics approaches to provide a comprehensive perspective on how plant-microbe interactions modulate biogeochemical cycles at molecular, genetic, and ecosystem levels. By highlighting novel microbial processes and potential biotechnological applications, this review aims to guide future research in leveraging plant-microbe symbioses for sustainable agriculture, ecosystem restoration, and climate change mitigation.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, Punjab, India.
| | - Fayzan Qadir
- Department of Civil Engineering, Engineering & Technology, Jamia Millia Islamia-Jamia Nagar, New Delhi 110025, India
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Saefudin
- Research Center for Estate Crop, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Dibyo Pranowo
- Research Center for Estate Crop, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Chaireni Martasari
- Research Center for Horticulture, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Mia Kosmiatin
- Research Center for Horticulture, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Cece Suhara
- Research Center for Estate Crop, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Tri Sudaryono
- Research Center for Horticulture, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Yusmani Prayogo
- Food Crops Research Center, National Research and Innovation Agency, Bogor 16111, Indonesia
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai -602105, Tamil Nadu, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Thi-Qar, Iraq
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait, King Khalid University, Abha 62561, Saudi Arabia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, 11942 Riyadh, Saudi Arabia
| | - Maha Awjan Alreshidi
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81441, Saudi Arabia
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, Punjab, India
| |
Collapse
|
3
|
Kralj K, Chen Z. Arbuscular mycorrhizal fungi improve treatment performance and vegetative resilience in constructed wetlands exposed to microplastics. ENVIRONMENTAL RESEARCH 2025; 270:121049. [PMID: 39920963 DOI: 10.1016/j.envres.2025.121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Microplastics are increasingly present in municipal wastewater and wastewater treatment plant effluent, prompting the use of constructed wetlands (CWs) for additional treatment. Enhancing CWs with arbuscular mycorrhizal fungi (AMF), known to aid nutrient removal and alleviate plant pollution stress, is gaining interest. This study is the first to examine the influence of two microplastic polymers (polyethylene microspheres and polyester microfibers) at concentrations of 0.1 and 1 mg/L on nutrient removal, plant health, and microbial composition in AMF-inoculated CWs. The results indicate that AMF inoculation combined with microplastic treatments significantly enhances nutrient removal in wetlands, achieving a 45.7% increase in total nitrogen removal and a 25.3% increase in phosphate removal. The effects of microplastics on plant health vary depending on the inoculation status, with an increase in lipid peroxidation (73.4% ± 25.4), and a decrease in the effective quantum yield of PSII (13.4% ± 5) observed in all treatments. High concentrations of polyester microfibers significantly altered the microbial community, increasing AMF colonization frequency and microbial richness, decreasing evenness and the abundance of denitrifying genera, and creating distinct clusters in beta diversity analysis. AMF inoculation maintained higher species richness and evenness, contributing to the resilience of CWs to microplastic pollution. Overall, AMF-inoculated wetlands and plants showed superior treatment performance, highlighting the successful bio-augmentation potential of this approach.
Collapse
Affiliation(s)
- Kristina Kralj
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| |
Collapse
|
4
|
Li D, Zhang X, Zhang H, Fan Q, Guo B, Li J. A global meta-analysis reveals effects of heavy metals on soil microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138018. [PMID: 40138950 DOI: 10.1016/j.jhazmat.2025.138018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Heavy metal (HM) contamination disrupts soil ecosystem functions. Microorganisms are pivotal for sustaining soil health, but accurately assessing the ecological risks of HM contamination to microorganisms remains challenging. Here, we conducted a meta-analysis synthesizing 914 datasets from 72 studies to quantify and evaluate the impacts of HMs on microorganisms. The overall effect value results indicate that HM negatively impacts most microbiological indicators, with bacterial abundance (-38 %), fungal abundance (-18 %), microbial biomass carbon (-42 %), microbial biomass nitrogen (-44 %), arylsulfatase (-45 %) and dehydrogenase activity (-66 %) were significantly reduced (p < 0.01), suggesting they can act as sensitivity indicators for assessing ecological risk of microorganisms. Compared to bacteria, fungal indicators (e.g., fungal community structure and Shannon index) are less responsive to HM contamination. At low potential ecological risk index (RI < 150), HM contamination positively impacted certain microbial indicators, such as fungal abundance, fungal Shannon index, and β-glucosidase activity. With increasing RI levels, the negative effects of HMs on microorganisms became more pronounced. Microbiological indicators in acidic soils (pH < 6.5), coarse textured soils, and mining soils were more negatively affected by HMs. Random forest and structural equation modeling analysis also identified RI levels and pH as crucial factors in determining the microbial response to HMs. Adjusted RI (adRI) were calculated using adjusted toxicity factors (adTF). The adRI demonstrated stronger correlations with microbial indicators and lower root-mean-square error (RMSE) in the random forest model than the RI, indicating that adTF is a more effective method for evaluating the effects of HMs on microorganisms. This study enhances the accuracy of quantifying and assessing HM impacts on microorganisms, offering crucial scientific basis for environmental protection and soil remediation.
Collapse
Affiliation(s)
- Dale Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Jinzhong, Shanxi 030600, China
| | - Xiujuan Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Hong Zhang
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qirui Fan
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Baobei Guo
- Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi 030006, China
| | - Junjian Li
- Institute of Loess Plateau, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
5
|
Zhu S, Mao H, Yang X, Zhao W, Sheng L, Sun S, Du X. Resilience mechanisms of rhizosphere microorganisms in lead-zinc tailings: Metagenomic insights into heavy metal resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117956. [PMID: 40056745 DOI: 10.1016/j.ecoenv.2025.117956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/10/2024] [Accepted: 02/22/2025] [Indexed: 03/10/2025]
Abstract
This study investigates the impact of heavy metal contamination in lead-zinc tailings on plant and soil microbial communities, focusing on the resilience mechanisms of rhizosphere microorganisms in these extreme environments. Utilizing metagenomic techniques, we identified a significant association between Coriaria nepalensis Wall. rhizosphere microbial communities and metal(loid) resistance genes. Our results reveal a notable diversity and abundance of bacteria within the rhizosphere of tailings, primarily consisting of Proteobacteria, Actinobacteria, and Chloroflexi. The presence of metal-resistant bacterial taxa, including Afipia, Bradyrhizobium, Sphingomonas, and Miltoncostaea, indicates specific evolutionary adaptations to metal-rich, nutrient-deficient environments. Elevated expression of resistance genes such as znuD, zntA, pbrB, and pbrT underscores the microorganisms' ability to endure these harsh conditions. These resistance genes are crucial for maintaining biodiversity, ecosystem stability, and adaptability. Our findings enhance the understanding of interactions between heavy metal contamination, microbial community structure, and resistance gene dynamics in lead-zinc tailings. Additionally, this research provides a theoretical and practical foundation for employing plant-microbial synergies in the in-situ remediation of contaminated sites.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xianwang Du
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| |
Collapse
|
6
|
Wang Y, Li X, You L, Hu S, Fang J, Hu B, Chen Z. Enhancement of PFAS stress tolerance and wastewater treatment efficiency by arbuscular mycorrhizal fungi in constructed wetlands. ENVIRONMENTAL RESEARCH 2024; 263:120148. [PMID: 39424036 DOI: 10.1016/j.envres.2024.120148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
This study aims to explore the effects of arbuscular mycorrhizal fungi (AMF) on the growth of Iris pseudacorus L. and treatment efficacy in constructed wetlands (CWs) subjected to stress from per-and poly-fluoroalkyl substances (PFASs). The findings reveal that PFASs exposure induces oxidative damage and inhibits the growth of I. pseudacorus. However, AMF symbiosis enhances plant tolerance to PFAS stress by modulating oxidative responses. AMF treatment not only promoted plant growth but also improved photosynthetic efficiency under PFAS exposure. Compared to non-AMF treatment, those with AMF treatment exhibited significantly increased levels of peroxidases and antioxidant enzymes, including peroxidase and superoxide dismutase, along with a notable reduction in lipid peroxidation. Additionally, AM symbiosis markedly enhanced the efficacy of CWs in the remediation of wastewater under PFASs-induced stress, with removal efficiencies for COD, TP, TN, and NH4+-N increasing by 19-34%, 67-180%, 106-137%, and 25-95%, respectively, compared to the AMF- treatments. In addition, the metabolic pathways of PFASs appeared to be influenced by their carbon chain length, with long-chain PFASs like perfluorooctanoic acid (PFOA) and perfluoro anionic acid (PFNA) exhibiting more complex pathways compared to short-chain PFASs such as perfluoro acetic acid (PFPeA), and perfluoro hexanoic acid (PFHpA). These results suggest that AMF-plant symbiosis can enhance plant resilience against PFAS-induced stress and improve the pollutant removal efficiency of CWs. This study highlights the significant potential of AMF in enhancing environmental remediation strategies, providing new insights for the more effective management of PFAS-contaminated ecosystems.
Collapse
Affiliation(s)
- Yuchen Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xue Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lexing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shanshan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jinfu Fang
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha - Suchdol, 16500, Czech Republic; School of Resource and Environmental Sciences, Wuhan University of Technology, Wuhan, 430079, China
| | - Bo Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha - Suchdol, 16500, Czech Republic
| |
Collapse
|
7
|
Zhu S, Zhao W, Sun S, Yang X, Mao H, Sheng L, Chen Z. Community metagenomics reveals the processes of cadmium resistance regulated by microbial functions in soils with Oryza sativa root exudate input. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175015. [PMID: 39069186 DOI: 10.1016/j.scitotenv.2024.175015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Plants exert a profound influence on their rhizosphere microbiome through the secretion of root exudates, thereby imparting critical effects on their growth and overall health. The results unveil that japonica rice showcases a remarkable augmentation in its antioxidative stress mechanisms under Cd stress. This augmentation is characterized by the sequestration of heavy metal ions within the root system and the prodigious secretion of a spectrum of flavonoids, including Quercetin, Luteolin, Apigenin, Kaempferide, and Sakuranetin. These flavonoids operate as formidable guardians, shielding the plant from oxidative damage instigated by Cd-induced stress. Furthermore, the metagenomic analyses divulge the transformative potential of flavonoids, as they induce profound alterations in the composition and structural dynamics of plant rhizosphere microbial communities. These alterations manifest through the recruitment of plant growth-promoting bacteria, effectively engineering a conducive milieu for japonica rice. In addition, our symbiotic network analysis discerns that flavonoid compounds significantly improved the positive correlations among dominant species within the rhizosphere of japonica rice. This, in turn, bolsters the stability and intricacy of the microenvironmental ecological network. KEGG functional analyses reveal a notable upregulation in the expression of flavonoid functional genes, specifically cadA, cznA, nccC, and czrB, alongside an array of transporters, encompassing RND, ABC, MIT, and P-ATPase. These molecular orchestrations distinctly demarcated the rhizosphere microbiome of japonica rice, markedly enhancing its tolerance to Cd-induced stress. These findings not only shed light on the establishment of Cd-resistant bacterial consortia in rice but also herald a promising avenue for the precise modulation of plant rhizosphere microbiomes, thereby fortifying the safety and efficiency of crop production.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic
| |
Collapse
|
8
|
Deng X, Shi R, Elnour RO, Guo Z, Wang J, Liu W, Li G, Jiao Z. Analysis of rhizosphere fungal diversity in lavender at different planting years based on high-throughput sequencing technology. PLoS One 2024; 19:e0310929. [PMID: 39361671 PMCID: PMC11449376 DOI: 10.1371/journal.pone.0310929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Continuous cropping is a common cultivation practice in lavender cultivation, and the structure of the soil microbial community is one of the main reasons affecting the continuous cropping disorder in lavender; however, the relationship between the number of years of cultivation and inter-root microbial composition has not yet been investigated; using Illumina high-throughput sequencing we detected fungal community structure of rhizosphere soil under 1 (L1), 3 (L3), 5 (L5) and 0 (L0) years' of lavender cultivation in Yili, Xinjiang China. The results showed that with the extension of planting years, the physical-chemical characteristics of the soil shifted, and the diversity of the fungal communities shrank, the abundance and richness of species decreased and then increased, and the phylogenetic diversity increased, The structure of the soil fungal communities varied greatly. At phylum level, dominant fungal phyla were Ascomycetes, Basidiomycetes, etc. At genus level, dominant genera were Gibberella, Mortierella, etc, whose absolute abundance all increased with increasing planting years (P < 0.05); redundancy analysis showed that thesoil physicochemical characteristics significantly correlated with dominant bacterial genera. The FUN Guild prediction showed that six groups of plant pathogens and plant saprotrophs changed significantly (P < 0.05), the amount of harmful bacteria in the soil increased while the amount of arbuscular mycorrhizal fungui (AMF) decreased, leading to a continuous cropping obstacle of lavender. The findings of this study provida theoretical foundation for the management of continuous cropping and the prevention fungus-related diseases in lavender.
Collapse
Affiliation(s)
- Xia Deng
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Renzeng Shi
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Rehab O Elnour
- Faculty of Sciences and Arts, Biology Department, King Khalid University, Dahran Al-Janoub, Saudi Arabia
| | - Zixuan Guo
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Junzhu Wang
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Wenwen Liu
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Guihua Li
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| | - Ziwei Jiao
- College of Biological Science and Technology, Yili Normal University, Yining, Xin Jiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization at Yili Normal University, Yining, Xin Jiang, China
| |
Collapse
|
9
|
Chen Y, Hajslova J, Schusterova D, Uttl L, Vymazal J, Chen Z. Transformation and degradation of tebuconazole and its metabolites in constructed wetlands with arbuscular mycorrhizal fungi colonization. WATER RESEARCH 2024; 263:122129. [PMID: 39094199 DOI: 10.1016/j.watres.2024.122129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) colonization has been used in constructed wetlands (CWs) to enhance treatment performance. However, its role in azole (fungicide) degradation and microbial community changes is not well understood. This study aims to explore the impact of AMF on the degradation of tebuconazole and its metabolites in CWs. Total organic carbon levels were consistently higher with the colonization of AMF (AMF+; 9.63- 16.37 mg/L) compared to without the colonization of AMF (AMF-; 8.79-14.48 mg/L) in CWs. Notably, tebuconazole removal was swift, occurring within one day in both treatments (p = 0.885), with removal efficiencies ranging from 94.10 % to 97.83 %. That's primarily due to rapid substrate absorption at the beginning, while degradation follows with a longer time. Four metabolites were reported in CWs first time: tebuconazole hydroxy, tebuconazole lactone, tebuconazole carboxy acid, and tebuconazole dechloro. AMF decreased the abundance of tebuconazole dechloro in the liquid phase, suggesting an inhibitory effect of AMF on dechlorination processes. Furthermore, tebuconazole carboxy acid and hydroxy were predominantly found in plant roots, with a higher abundance observed in AMF+ treatments. Metagenomic analysis highlighted an increasing abundance in bacterial community structure in favor of beneficial microorganisms (xanthomonadales, xanthomonadaceae, and lysobacter), along with a notable presence of functional genes like codA, NAD, and deaD in AMF+ treatments. These findings highlight the positive influence of AMF on tebuconazole stress resilience, microbial community modification, and the enhancement of bioremediation capabilities in CWs.
Collapse
Affiliation(s)
- Yingrun Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Dana Schusterova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Leos Uttl
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jan Vymazal
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic.
| |
Collapse
|
10
|
Zhu S, Zhao W, Sheng L, Yang X, Mao H, Sun S, Chen Z. Integrated transcriptome and metabolomics analyses revealed key functional genes in Canna indica under Cr stress. Sci Rep 2024; 14:14090. [PMID: 38890328 PMCID: PMC11189463 DOI: 10.1038/s41598-024-64877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Chromium (Cr) can interfere with plant gene expression, change the content of metabolites and affect plant growth. However, the molecular response mechanism of wetland plants at different time sequences under Cr stress has yet to be fully understood. In this study, Canna indica was exposed to 100 mg/kg Cr-contaminated soil for 0, 7, 14, and 21 days and analyzed using untargeted metabolomics (LC-MS) and transcriptomics. The results showed that Cr stress increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD), the contents of glutathione (GSH), malondialdehyde (MDA), and oxygen free radical (ROS), and inhibited the biosynthesis of photosynthetic pigments, thus leading to changes in plant growth and biomass. Metabonomics analysis showed that Cr stress mainly affected 12 metabolic pathways, involving 38 differentially expressed metabolites, including amino acids, phenylpropane, and flavonoids. By transcriptome analysis, a total of 16,247 differentially expressed genes (DEGs, 7710 up-regulated genes, and 8537 down-regulated genes) were identified, among which, at the early stage of stress (Cr contaminate seven days), C. indica responds to Cr toxicity mainly through galactose, starch and sucrose metabolism. With the extension of stress time, plant hormone signal transduction and MAPK signaling pathway in C. indica in the Cr14 (Cr contaminate 14 days) treatment group were significantly affected. Finally, in the late stage of stress (Cr21), C. indica co-defuses Cr toxicity by activating its Glutathione metabolism and Phenylpropanoid biosynthesis. In conclusion, this study revealed the molecular response mechanism of C. indica to Cr stress at different times through multi-omics methods.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China.
| | - Wei Zhao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Suxia Sun
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol, 16500, Czech Republic
| |
Collapse
|
11
|
Zhu S, Sun S, Zhao W, Yang X, Chen Z, Mao H, Sheng L. Comprehensive physiology and proteomics analysis revealed the resistance mechanism of rice (Oryza sativa L) to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116413. [PMID: 38728942 DOI: 10.1016/j.ecoenv.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Cadmium contamination can lead to a decrease in crop yield and quality. However, Cd-tolerant rice can improve rice resistance genes, improve crop tolerance to heavy metals, and protect plants from oxidative damage. In this study, Japonica rice: Chunyou 987 and Indica rice: Chuanzhong you 3607 were used to reveal the molecular response mechanism of Cd-tolerant rice under cadmium concentration of 3 mg/kg through comparative experiments combined with physiology and proteomics. The results showed that compared with indica rice, japonica rice showed more robust resistance to Cd stress and effectively retained many Cd ions in roots. Moreover, it enhanced its enzymatic and non-enzymatic anti-oxidative stress mechanism, which increased the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) by 47.37%, 21.75%, and 55.42%, respectively. The contents of non-enzymatic antioxidant substances ascorbic acid (AsA), glutathione (GSH), cysteine (Cys), proline (PRO), anthocyanins (OPC), and flavonoids were increased by 25.32%, 42.67%, 21.43%, 50.81%, 33.23%, and 72.16%, respectively. Through proteomics analysis, it was found that in response to the damage caused by cadmium stress, Japonica rice makes Photosynthesis functional proteins (psbO and PetH), Photosynthesis antenna proteins (LHCA and ASCAB9), Carbon fixation functional proteins (PEPC and OsAld), Porphyrin metabolism functional proteins (OsRCCR1 and SE5), Glyoxylate and dicarboxylate The expression of metabolism functional proteins (CATC and GLO4.) and Glutathione metabolism functional proteins (APX8 and OsGSTU13) were significantly up-regulated, which stimulated the antioxidant stress mechanism and photosynthetic system, and constructed a robust energy supply system to ensure the normal metabolic activities of life. Strengthening the mechanisms of plant homeostasis. In summary, this study revealed the molecular mechanism of tolerance to Cd stress in japonica rice, and the results of this study will provide a possible way to improve Cd-resistant rice seedlings.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| |
Collapse
|
12
|
Sixi Z, Sun S, Zhao W, Yang X, Mao H, Sheng L. Comprehensive physiology and proteomics analysis revealed the molecular toxicological mechanism of Se stress on indica and japonica rice. CHEMOSPHERE 2024; 358:142190. [PMID: 38685336 DOI: 10.1016/j.chemosphere.2024.142190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Selenium pollution can lead to a decrease in crop yield and quality. However, the toxicological mechanisms of high Se concentrations on crops remain unclear. This study aimed to elucidate the physiological and proteomic molecular responses to Se stress in Oryza sativa. The results showed that under selenium stress, enzymatic activities of catalase, peroxidase, and superoxide dismutase in indica rice decreased by 61%, 28%, and 68%, respectively. The contents of non-enzymatic antioxidant substances ascorbic acid, glutathione, cysteine, proline, anthocyanidin, and flavonoids were decreased by 13%, 39%, 46%, 32%, 20%, and 5%, respectively, which significantly inhibited the antioxidant stress process of plants. At the same time, the results of proteomics analysis showed that rice seedlings, under Se stress, are involved in photosynthesis, photosynthesis-antenna proteins, carbon fixation, porphyrin metabolism, glyoxylate, and dicarboxylate. The differentially expressed proteins in metabolism and glutathione metabolism pathways showed a downward trend. It significantly inhibited the anti-oxidative stress, photosynthesis, and energy cycling process in plant cells, destroyed the homeostasis balance of rice plants, and inhibited the growth and development of rice. This finding reveals the molecular toxicological mechanism of Se stress on rice seedlings and provides a possible way to improve Se-resistant rice seedlings.
Collapse
Affiliation(s)
- Zhu Sixi
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China.
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| |
Collapse
|
13
|
Zhu S, Sun S, Zhao W, Yang X, Mao H, Sheng L, Chen Z. Utilizing transcriptomics and proteomics to unravel key genes and proteins of Oryza sativa seedlings mediated by selenium in response to cadmium stress. BMC PLANT BIOLOGY 2024; 24:360. [PMID: 38698342 PMCID: PMC11067083 DOI: 10.1186/s12870-024-05076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China.
| | - Suxia Sun
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Wei Zhao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Prague-Suchdol, 16500, Czech Republic
| |
Collapse
|
14
|
Zhu Y, Ke M, Yu Z, Lei C, Liu M, Yang Y, Lu T, Zhou NY, Peijnenburg WJGM, Tang T, Qian H. Combined effects of azoxystrobin and oxytetracycline on rhizosphere microbiota of Arabidopsis thaliana. ENVIRONMENT INTERNATIONAL 2024; 186:108655. [PMID: 38626494 DOI: 10.1016/j.envint.2024.108655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
The rhizosphere is one of the key determinants of plant health and productivity. Mixtures of pesticides are commonly used in intensified agriculture. However, the combined mechanisms underlying their impacts on soil microbiota remain unknown. The present study revealed that the rhizosphere microbiota was more sensitive to azoxystrobin and oxytetracycline, two commonly used pesticides, than was the microbiota present in bulk soil. Moreover, the rhizosphere microbiota enhanced network complexity and stability and increased carbohydrate metabolism and xenobiotic biodegradation as well as the expression of metabolic genes involved in defence against pesticide stress. Co-exposure to azoxystrobin and oxytetracycline had antagonistic effects on Arabidopsis thaliana growth and soil microbial variation by recruiting organic-degrading bacteria and regulating ABC transporters to reduce pesticide uptake. Our study explored the composition and function of soil microorganisms through amplicon sequencing and metagenomic approaches, providing comprehensive insights into the synergistic effect of plants and rhizosphere microbiota on pesticides and contributing to our understanding of the ecological risks associated with pesticide use.
Collapse
Affiliation(s)
- Yuke Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhitao Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Chaotang Lei
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Meng Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yaohui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden 2300, RA, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
15
|
Han L, Gu H, Lu W, Li H, Peng WX, Ling Ma N, Lam SS, Sonne C. Progress in phytoremediation of chromium from the environment. CHEMOSPHERE 2023; 344:140307. [PMID: 37769918 DOI: 10.1016/j.chemosphere.2023.140307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
As chromium (Cr) in ecosystems affects human health through food chain exposure, phytoremediation is an environmentally friendly and efficient way to reduce chromium pollution in the environment. Here, we review the mechanism of absorption, translocation, storage, detoxification, and regulation of Cr in plants. The Cr(VI) form is more soluble, mobile, and toxic than Cr(III), reflecting how various valence states of Cr affect environmental risk characteristics, physicochemical properties, toxicity, and plant uptake. Plant root's response to Cr exposure leads to reactive oxygen species (ROS) generation and apoptosis. Cell wall immobilization, vacuole compartmentation, interaction of defense proteins and organic ligand with Cr, and removal of reactive oxygen species by antioxidants continue plant life. In addition, the combined application of microorganisms, genetic engineering, and the addition of organic acids, nanoparticles, fertilization, soil amendments, and other metals could accelerate the phytoremediation process. This review provides efficient methods to investigate and understand the complex changes of Cr metabolism in plants. Preferably, fast-growing, abundantly available biomass species should be modified to mitigate Cr pollution in the environment as these green and efficient remediation technologies are necessary for the protection of soil and water ecology.
Collapse
Affiliation(s)
- Lingzhuo Han
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjie Lu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wan-Xi Peng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030, Universiti Malaysia Terengganu, Malaysia; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde, DK-4000, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
16
|
Sheng L, Zhao W, Yang X, Mao H, Zhu S. Response characteristics of rhizosphere microbial community and metabolites of Iris tectorum to Cr stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115218. [PMID: 37441947 DOI: 10.1016/j.ecoenv.2023.115218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Chromium (Cr) is a toxic heavy element that interferes with plant metabolite biosynthesis and modifies the plant rhizosphere microenvironment, affecting plant growth. However, the interactions and response mechanisms between plants and rhizosphere bacteria under Cr stress still need to be fully understood. In this study, we used Iris tectorum as a research target and combined physiology, metabolomics, and microbiology to reveal the stress response mechanism of I. tectorum under heavy metal chromium stress. The results showed that Cr stress-induced oxidative stress inhibited plant growth and development and increased malondialdehyde and oxygen free radicals content. Also, it increased ascorbate peroxidase, peroxidase activity, and superoxide dismutase activity, as well as glutathione and soluble sugar content. Microbiome analysis showed that Cr stress changed the rhizosphere bacterial community diversity index by 33.56%. Proteobacteria, Actinobacteriota, and Chloroflexi together accounting for 71.21% of the total sequences. Meanwhile, the abundance of rhizosphere dominant and plant-promoting bacteria increased significantly with increasing time of Cr stress. The improvement of the soil microenvironment and the recruitment of bacteria by I. tectorum root secretions were significantly enhanced. By metabolomic analysis, five vital metabolic pathways were identified, involving 89 differentially expressed metabolites, divided into 15 major categories. In summary, a multi-omics approach was used in this study to reveal the interaction and stress response mechanisms between I. tectorum and rhizosphere bacterial communities under Cr stress, which provided theoretical basis for plant-microbial bioremediation of Cr-contaminated soils in constructed wetlands. This may provide more valuable information for wetland remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, China; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| |
Collapse
|
17
|
Sun W, Shahrajabian MH. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:3101. [PMID: 37687348 PMCID: PMC10490045 DOI: 10.3390/plants12173101] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Biostimulant application can be considered an effective, practical, and sustainable nutritional crop supplementation and may lessen the environmental problems related to excessive fertilization. Biostimulants provide beneficial properties to plants by increasing plant metabolism, which promotes crop yield and improves the quality of crops; protecting plants against environmental stresses such as water shortage, soil salinization, and exposure to sub-optimal growth temperatures; and promoting plant growth via higher nutrient uptake. Other important benefits include promoting soil enzymatic and microbial activities, changing the architecture of roots, increasing the solubility and mobility of micronutrients, and enhancing the fertility of the soil, predominantly by nurturing the development of complementary soil microbes. Biostimulants are classified as microbial, such as arbuscular mycorrhizae fungi (AMF), plant-growth-promoting rhizobacteria (PGPR), non-pathogenic fungi, protozoa, and nematodes, or non-microbial, such as seaweed extract, phosphite, humic acid, other inorganic salts, chitin and chitosan derivatives, protein hydrolysates and free amino acids, and complex organic materials. Arbuscular mycorrhizal fungi are among the most prominent microbial biostimulants and have an important role in cultivating better, healthier, and more functional foods in sustainable agriculture. AMF assist plant nutrient and water acquisition; enhance plant stress tolerance against salinity, drought, and heavy metals; and reduce soil erosion. AMF are proven to be a sustainable and environmentally friendly source of crop supplements. The current manuscript gives many examples of the potential of biostimulants for the production of different crops. However, further studies are needed to better understand the effectiveness of different biostimulants in sustainable agriculture. The review focuses on how AMF application can overcome nutrient limitations typical of organic systems by improving nutrient availability, uptake, and assimilation, consequently reducing the gap between organic and conventional yields. The aim of this literature review is to survey the impacts of AMF by presenting case studies and successful paradigms in different crops as well as introducing the main mechanisms of action of the different biostimulant products.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
18
|
Mao H, Zhao W, Yang X, Sheng L, Zhu S. Recruitment and metabolomics between Canna indica and rhizosphere bacteria under Cr stress. Front Microbiol 2023; 14:1187982. [PMID: 37655347 PMCID: PMC10465350 DOI: 10.3389/fmicb.2023.1187982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
It is of positive significance to explore the mechanism of antioxidant and metabolic response of Canna indica under Cr stress mediated by rhizosphere niche. However, the mechanisms of recruitment and interaction of rhizosphere microorganisms in plants still need to be fully understood. This study combined physiology, microbiology, and metabolomics, revealing the interaction between C. indica and rhizosphere microorganisms under Cr stress. The results showed that Cr stress increased the content of malondialdehyde (MDA) and oxygen-free radicals (ROS) in plants. At the same time, the activities of antioxidant enzymes (SOD, POD, and APX) and the contents of glutathione (GSH) and soluble sugar were increased. In addition, Cr stress decreased the α diversity index of C. indica rhizosphere bacterial community and changed its community structure. The dominant bacteria, namely, Actinobacteriota, Proteobacteria, and Chloroflexi accounted for 75.16% of the total sequence. At the same time, with the extension of stress time, the colonization amount of rhizosphere-dominant bacteria increased significantly, and the metabolites secreted by roots were associated with the formation characteristics of Proteobacteria, Actinobacteria, Bacteroidetes, and other specific bacteria. Five critical metabolic pathways were identified by metabolome analysis, involving 79 differentially expressed metabolites, which were divided into 15 categories, mainly including lipids, terpenoids, and flavonoids. In conclusion, this study revealed the recruitment and interaction response mechanism between C. indica and rhizosphere bacteria under Cr stress through multi-omics methods, providing the theoretical basis for the remediation of Cr-contaminated soil.
Collapse
Affiliation(s)
| | | | | | | | - Sixi Zhu
- The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, College of Eco-Environment Engineering, Guizhou Minzu University, Guiyang, China
| |
Collapse
|