1
|
Jahan F, Nasim MI, Wang Y, Kamrul Bashar SM, Hasan R, Suchana AJ, Amin N, Haque R, Hares MA, Saha A, Hossain ME, Rahman MZ, Diamond M, Raj S, Hilton SP, Liu P, Moe C, Rahman M. Integrating wastewater surveillance and meteorological data to monitor seasonal variability of enteric and respiratory pathogens for infectious disease control in Dhaka city. Int J Hyg Environ Health 2025; 267:114591. [PMID: 40403455 DOI: 10.1016/j.ijheh.2025.114591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/28/2025] [Accepted: 05/02/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Seasonal meteorological variations influence the spread of infectious diseases. Wastewater surveillance helps understanding pathogen transmission dynamics, particularly in urban areas of climate-vulnerable countries like Bangladesh. METHODS We analysed 54 weeks of wastewater surveillance, clinical surveillance, and meteorological data from Dhaka, Bangladesh. Samples from 11 sites were tested for Vibrio cholerae (V. cholerae), SARS-CoV-2, Salmonella enterica subspecies enterica serovar Typhi (S. Typhi), and Group A rotavirus. Diarrhoeal Disease Surveillance data were sourced from icddr,b, and meteorological data from the Bangladesh Meteorological Department. Regression models adjusted for site and time variations were used for statistical analysis. RESULTS Proportion of confirmed cholera cases among the diarrhoeal disease surveillance recruits were highest during post-monsoon (coef: 2.53; 95 % CI: 0.41 to 4.67; p = 0.029). V. cholerae log10 concentrations in wastewater were positively associated with pre-monsoon (coef: 0.93; 95 % CI: 0.26 to 1.58; p = 0.010), while SARS-CoV-2 peaked during monsoon (coef: 1.85; 95 % CI: 0.96 to 2.73; p < 0.001). S. Typhi and rotavirus log10 concentrations showed negative associations with pre-monsoon (coef: -0.96; 95 % CI: -1.68 to -0.27; p = 0.011, and -0.84; 95 % CI: -1.17 to -0.50; p < 0.001, respectively). Temperature positively influenced log10 concentrations of V. cholerae (adj. coef: 0.09; 95 % CI: 0.02 to 0.15; p = 0.014) and SARS-CoV-2 (adj. coef: 0.19; 95 % CI: 0.10 to 0.27; p < 0.001), but negatively associated with rotavirus (adj. coef: -0.06; 95 % CI: -0.10 to -0.03; p < 0.001). Similar associations were found between pathogen-positive samples and temperature. CONCLUSION Our study shows that seasonal, and meteorological factors (particularly temperature) influence the patterns and abundance of pathogens in wastewater and help in understanding disease transmission across different weather patterns.
Collapse
Affiliation(s)
- Farjana Jahan
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh.
| | - Mizanul Islam Nasim
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Yuke Wang
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Sk Md Kamrul Bashar
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Rezaul Hasan
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Afroza Jannat Suchana
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Nuhu Amin
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Rehnuma Haque
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Md Abul Hares
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Akash Saha
- One Health Laboratory & Programme for Respiratory Infections, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Mohammad Enayet Hossain
- One Health Laboratory & Programme for Respiratory Infections, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Mohammed Ziaur Rahman
- One Health Laboratory & Programme for Respiratory Infections, International Centre for Diarrhoeal Disease Research, Bangladesh
| | - Megan Diamond
- WHO Hub for Pandemic and Epidemic Preparedness, World Health Organization, New York, USA
| | - Suraja Raj
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Stephen Patrick Hilton
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Pengbo Liu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Christine Moe
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Mahbubur Rahman
- Environmental Health and WASH, International Centre for Diarrhoeal Disease Research, Bangladesh; Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Sweden
| |
Collapse
|
2
|
Lee SK, Jeon YL, Cho EJ, Kim HS, Kim JS, Song W, Kim HS. Surge of human astrovirus type 1 infection in summer 2022 in Korea. Epidemiol Infect 2025; 153:e2. [PMID: 39757937 PMCID: PMC11704925 DOI: 10.1017/s0950268824000980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 01/07/2025] Open
Abstract
As astroviral infection rapidly increased in the summer of 2022 in Korea, this study aimed to determine the cause and genotype of astroviruses during this period. From January to December 2022, we tested 43,312 stool samples from patients with acute gastroenteritis utilizing multiplex PCR to detect HAstV. For the HAstV-positive samples, we determined the genotypes of the HAstVs by PCR and sequencing. The monthly positive rate from 2015 to 2022 showed a notable and abrupt increase of HAstV infection between June and August 2022, peaking at 9.8% in July 2022. The annual positivity rate of HAstV remained at 2-3% between 2015 and 2019, and then decreased to 0.5% in 2020, followed by an increase to 1.5% in 2021 and 3.6% in 2022.The genotyped astroviruses in 2022 were all identified as HAstV-1 type, and the nucleotide identity% among them was >99%. The GenBank accession number for the strain genetically closest to the strains identified in our study was ON571597.1, which was HAstV-1 isolated from Pingtan in 2019. Our results provide recent epidemiological data on HAstVs in Korea. The decline and surge in astrovirus positivity in recent years may be related to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Su-Kyung Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - You La Jeon
- Laboratory Medicine, Green Cross Laboratories, Youngin, Korea
| | - Eun-Jung Cho
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Han-Sung Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
3
|
Gozlan Y, Zuckerman NS, Yizchaki M, Rich R, Bar-Or I, Mor O. Exploring hepatitis A dynamics in Israel, 2019-2022. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176861. [PMID: 39437928 DOI: 10.1016/j.scitotenv.2024.176861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Continuous monitoring of Hepatitis A Virus (HAV) may assist in identifying local outbreaks. The advent of the COVID-19 pandemic, which affected the circulation of numerous pathogens, may have also impacted the scope of HAV infections. AIM To investigate the incidence and environmental dissemination of HAV between 2019 and 2022 in Israel, a country with an anti-HAV vaccination program. METHODS HAV RT-PCR analysis was performed for all HAV cases and for 280 sewage samples collected in 2019-2022. Available amplified HAV fragments from clinical (n = 107) and sewage (n = 27) were also assessed by genotyping and phylogenetic analysis. RESULTS In 2019-2022, 158 individuals and 12.9 % (36/280) of sewage samples were HAV-RNA positive. Median age was 30 years (IQR 20.5-44); approximately half (51.9 %, 82/158) were males. Almost all patients (98.4 %, 124/126) were not vaccinated. Highest numbers were identified in 2019 (84 cases and 30 %, 21/71, positive sewage samples). In 2020, when three COVID-19 related lockdowns were implemented, 24 cases and 4.3 % (3/69) sewage samples were HAV-RNA positive. The number of HAV-RNA positive cases and positive sewage samples remained low in 2021-2022 (31 and 19 cases, 13.2 %, 9/68 and 4.2 %, 3/72 positive sewage samples, respectively). Sub-genotype IB dominated (90.7 %, 97/107 of cases and 81.5 %, 22/27 of sewage samples), and phylogenetic analysis of HAV samples demonstrated small transmission clusters of sequences from Jews, Bedouin Arabs and foreign workers. Sub-genotype IA was identified in 8.4 % (9/107) of cases and in 18.5 % (5/27) of sewage samples. CONCLUSION Combined clinical and environmental surveillance is optimal for monitoring HAV. In 2020, the circulation of HAV decreased, possibly following COVD-19 health restrictions. In subsequent years, the incidence remained low. Adults in risk-groups for HAV infection should be vaccinated to minimize HAV circulation.
Collapse
Affiliation(s)
- Yael Gozlan
- Central Virology Laboratory, Ministry of Health, Israel; Faculty of Medicine, Tel-Aviv University, Israel.
| | | | | | - Rivka Rich
- Department of Epidemiology, Ministry of Health, Israel
| | - Itay Bar-Or
- Central Virology Laboratory, Ministry of Health, Israel
| | - Orna Mor
- Central Virology Laboratory, Ministry of Health, Israel; Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
4
|
Churqui MP, Ghaleb M, Tunovic T, Frankal M, Enache L, Nyström K, Lagging M, Wang H. High prevalence of hepatitis E and rat hepatitis E viruses in wastewater in Gothenburg, Sweden. One Health 2024; 19:100882. [PMID: 39267918 PMCID: PMC11391864 DOI: 10.1016/j.onehlt.2024.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatitis E virus (HEV) and Rat Hepatitis E virus (RHEV), recognized for their zoonotic potential, pose significant public health concerns. Our previous research identified both viruses in effluent wastewater in Gothenburg, Sweden. However, there are lingering inquiries regarding the prevalence and genetic diversity of these viruses in influent wastewater, as well as the utility of wastewater surveillance in elucidating their community circulation dynamics. To address these knowledge gaps, we conducted weekly collection of wastewater samples at the Rya wastewater treatment plant in Gothenburg throughout 2023. The concentrations of HEV and RHEV were quantified using quantitative polymerase chain reaction (qPCR). Additionally, two semi/nested-PCR were utilized to amplify viral strains. Furthermore, HEV strains from patients within the same region, as well as other regions in Sweden in 2023, were incorporated into the analysis. Remarkably, we observed a high prevalence of HEV (86%) and RHEV (98%) in wastewater samples, with the majority of HEV sequences identified as subtype 3c/i (9/12). In contrast, HEV subtype 3f was the most sequenced among clinical patient samples (6/12). Notably, previously unreported HEV-3b and unclassified strains were detected in wastewater. Almost all RHEV strains (20/21) were clustered into European groups, with none of the RHEV genetically close to strains previously found in human cases. The notable discordance in prevalence and identified subtypes of HEV-3 in wastewater compared to clinical samples suggests either a significant underdiagnosis of HEV infections or differences in viral loads and shedding durations among humans between HEV-3 subtypes. This underscores the urgent need for improved diagnostic techniques and heightened awareness of HEV transmission dynamics. Furthermore, the consistent detection of RHEV in wastewater underscores the necessity for further investigations to assess the potential role of RHEV in hepatitis cases of unknown etiology, given that most currently available clinical diagnostic assays fail to detect RHEV.
Collapse
Affiliation(s)
- Marianela Patzi Churqui
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Margarita Ghaleb
- Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Timur Tunovic
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Miriam Frankal
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Södra Älvsborg Hospital, Clinic of Infectious Diseases, Borås, Sweden
- Department of Research, Education and Innovation, Region Västra Götaland, Södra Älvsborg Hospital, Borås, Sweden
| | | | - Kristina Nyström
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Martin Lagging
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| | - Hao Wang
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital, Department of Clinical Microbiology, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
5
|
Freitas JF, Oliveira TT, Agnez-Lima LF. Metaviromic reveals the dynamics and diversity of the virosphere in wastewater samples from Natal, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124752. [PMID: 39154883 DOI: 10.1016/j.envpol.2024.124752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/20/2024]
Abstract
The COVID-19 pandemic underscored the significance of omics technology and Wastewater-Based Epidemiology for epidemic preparedness. This study investigates the virosphere in wastewater samples from Natal (Brazil), aiming to understand its structure, relationships, and potential. Metaviromic analysis was used on DNA and RNA from weekly samples collected over a year (June/2021 to May/2022) from three wastewater treatment plants. The virosphere showed stability, particularly in viruses infecting microorganisms and plants. However, an alternation of representatives of viruses that infect animals has been observed. Among the most abundant viruses infecting microorganisms are genera associated with the bacterial genera Escherichia, Pseudomonas, and Caulobacte. Regarding the viruses infecting plants, Sobemovirus and Tobamovirus are the most abundant genera. Odontoglossum ringspot virus was identified as a possible RNA virus biomarker. Among DNA viruses infecting animals, genera Bocaparvovirus and Mastadenovirus are the most prevalent. Intriguingly, some Poxviridae family members were observed in the samples. Co-occurrence network analysis identified potential biomarkers like Volepox virus, Anatid herpesvirus 1, and Caviid herpesvirus 2. Among RNA viruses affecting animals, Mamastrovirus, Rotavirus, and Norovirus genera were the most abundant pathogens. Furthermore, members of the Coronaviridae family exhibited a high degree of centrality values in the co-occurrence network, even connecting with unclassified viruses. The study emphasizes the importance of research in understanding the roles of unclassified viruses. In addition, we observed an association between Coronaviridae reads, rainfall, and the number of reported COVID-19 cases. Our study highlights the diversity and complexity of the viral community in wastewater and the need for research to understand better the ecological roles unclassified viruses play. Such advances will significantly contribute to our preparedness and response to future viral threats. Furthermore, our study contributes to knowledge of virosphere dynamics, offering insights that can contribute to the direction of future public health policies and interventions.
Collapse
Affiliation(s)
- Júlia Firme Freitas
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Thais Teixeira Oliveira
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Centro de Biociências, Departamento de Genética, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
6
|
Walker DI, Witt J, Rostant W, Burton R, Davison V, Ditchburn J, Evens N, Godwin R, Heywood J, Lowther JA, Peters N, Porter J, Posen P, Wickens T, Wade MJ. Piloting wastewater-based surveillance of norovirus in England. WATER RESEARCH 2024; 263:122152. [PMID: 39096810 DOI: 10.1016/j.watres.2024.122152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Wastewater-based epidemiology (WBE) gained widespread use as a tool for supporting clinical disease surveillance during the COVID-19 pandemic. There is now significant interest in the continued development of WBE for other pathogens of clinical significance. In this study, approximately 3,200 samples of wastewater from across England, previously collected for quantification of SARS-CoV-2, were re-analysed for the quantification of norovirus genogroup I (GI) and II (GII). Overall, GI and GII were detected in 93% and 98% of samples respectively, and at least one of the genogroups was detected in 99% of samples. GI was found at significantly lower concentrations than GII, but the proportion of each genogroup varied over time, with GI becoming more prevalent than GII in some areas towards the end of the study period (May 2021 - March 2022). Using relative strength indices (RSI), it was possible to study the trends of each genogroup, and total norovirus over time. Increases in norovirus levels appeared to coincide with the removal of COVID-19 related lockdown restrictions within England. Local Moran's I analyses indicated several localised outbreaks of both GI and GII across England, notably the possible GI outbreak in the north of England in early 2022. Comparisons of national average norovirus concentrations in wastewater against concomitant norovirus reported case numbers showed a significant linear relationship. This highlights the potential for wastewater-based monitoring of norovirus as a valuable approach to support surveillance of norovirus in communities.
Collapse
Affiliation(s)
- David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK.
| | - Jessica Witt
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Wayne Rostant
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Robert Burton
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Vicki Davison
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Jackie Ditchburn
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Nicholas Evens
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Reg Godwin
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Jane Heywood
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - James A Lowther
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Nancy Peters
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Jonathan Porter
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Paulette Posen
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | - Tyler Wickens
- Environment Agency, National Monitoring Laboratories, Staplake Mount, Starcross, Devon, UK
| | - Matthew J Wade
- Data Analytics & Surveillance Group, UK Health Security Agency, 10 South Colonnade, London, UK
| |
Collapse
|
7
|
Wyler E, Lauber C, Manukyan A, Deter A, Quedenau C, Teixeira Alves LG, Wylezich C, Borodina T, Seitz S, Altmüller J, Landthaler M. Pathogen dynamics and discovery of novel viruses and enzymes by deep nucleic acid sequencing of wastewater. ENVIRONMENT INTERNATIONAL 2024; 190:108875. [PMID: 39002331 DOI: 10.1016/j.envint.2024.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Wastewater contains an extensive reservoir of genetic information, yet largely unexplored. Here, we analyzed by high-throughput sequencing total nucleic acids extracted from wastewater samples collected during a 17 month-period in Berlin, Germany. By integrating global wastewater datasets and applying a novel computational approach to accurately identify viral strains within sewage RNA-sequencing data, we demonstrated the emergence and global dissemination of a specific astrovirus strain. Astrovirus abundance and sequence variation mirrored temporal and spatial patterns of infection, potentially serving as footprints of specific timeframes and geographical locations. Additionally, we revealed more than 100,000 sequence contigs likely originating from novel viral species, exhibiting distinct profiles in total RNA and DNA datasets and including undescribed bunyaviruses and parvoviruses. Finally, we identified thousands of new CRISPR-associated protein sequences, including Transposase B (TnpB), a class of compact, RNA-guided DNA editing enzymes. Collectively, our findings underscore the potential of high-throughput sequencing of total nucleic acids derived from wastewater for a broad range of applications.
Collapse
Affiliation(s)
- Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Artür Manukyan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Aylina Deter
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Quedenau
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Tatiana Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Janine Altmüller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Berlin Institute of Health at Charité, Berlin, Germany
| | - Markus Landthaler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Fujii Y, Tsugawa T, Fukuda Y, Adachi S, Honjo S, Akane Y, Kondo K, Sakai Y, Tanaka T, Sato T, Higasidate Y, Kubo N, Mori T, Kato S, Hamada R, Kikuchi M, Tahara Y, Nagai K, Ohara T, Yoshida M, Nakata S, Noguchi A, Kikuchi W, Hamada H, Tokutake-Hirose S, Fujimori M, Muramatsu M. Molecular evolutionary analysis of novel NSP4 mono-reassortant G1P[8]-E2 rotavirus strains that caused a discontinuous epidemic in Japan in 2015 and 2018. Front Microbiol 2024; 15:1430557. [PMID: 39050631 PMCID: PMC11266183 DOI: 10.3389/fmicb.2024.1430557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
In the 2010s, several unusual rotavirus strains emerged, causing epidemics worldwide. This study reports a comprehensive molecular epidemiological study of rotaviruses in Japan based on full-genome analysis. From 2014 to 2019, a total of 489 rotavirus-positive stool specimens were identified, and the associated viral genomes were analyzed by next-generation sequencing. The genotype constellations of those strains were classified into nine patterns (G1P[8] (Wa), G1P[8]-E2, G1P[8] (DS-1), G2P[4] (DS-1), G3P[8] (Wa), G3P[8] (DS-1), G8P[8] (DS-1), G9P[8] (Wa), and G9P[8]-E2). The major prevalent genotype differed by year, comprising G8P[8] (DS-1) (37% of that year's isolates) in 2014, G1P[8] (DS-1) (65%) in 2015, G9P[8] (Wa) (72%) in 2016, G3P[8] (DS-1) (66%) in 2017, G1P[8]-E2 (53%) in 2018, and G9P[8] (Wa) (26%) in 2019. The G1P[8]-E2 strains (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1) isolated from a total of 42 specimens in discontinuous years (2015 and 2018), which were the newly-emerged NSP4 mono-reassortant strains. Based on the results of the Bayesian evolutionary analyses, G1P[8]-E2 and G9P[8]-E2 were hypothesized to have been generated from distinct independent inter-genogroup reassortment events. The G1 strains detected in this study were classified into multiple clusters, depending on the year of detection. A comparison of the predicted amino acid sequences of the VP7 epitopes revealed that the G1 strains detected in different years encoded VP7 epitopes harboring distinct mutations. These mutations may be responsible for immune escape and annual changes in the prevalent strains.
Collapse
Affiliation(s)
- Yoshiki Fujii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Tsugawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yuya Fukuda
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Shuhei Adachi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Saho Honjo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yusuke Akane
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Kenji Kondo
- Department of Pediatrics, Sapporo Medical University School of Medicine, Hokkaido, Japan
| | - Yoshiyuki Sakai
- Department of Pediatrics, Hakodate Municipal Hospital, Hokkaido, Japan
| | - Toju Tanaka
- Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Hokkaido, Japan
| | - Toshiya Sato
- Department of Pediatrics, Iwamizawa Municipal General Hospital, Hokkaido, Japan
| | - Yoshihito Higasidate
- Department of Pediatrics, Japan Community Health Care Organization Sapporo Hokushin Hospital, Hokkaido, Japan
| | - Noriaki Kubo
- Department of Pediatrics, Japan Red Cross Urakawa Hospital, Hokkaido, Japan
| | - Toshihiko Mori
- Department of Pediatrics, NTT Medical Center Sapporo, Hokkaido, Japan
| | - Shinsuke Kato
- Department of Pediatrics, Rumoi City Hospital, Hokkaido, Japan
| | - Ryo Hamada
- Department of Pediatrics, Rumoi City Hospital, Hokkaido, Japan
| | - Masayoshi Kikuchi
- Department of Pediatrics, Sunagawa City Medical Center, Hokkaido, Japan
| | - Yasuo Tahara
- Department of Pediatrics, Steel Memorial Muroran Hospital, Hokkaido, Japan
| | - Kazushige Nagai
- Department of Pediatrics, Takikawa Municipal Hospital, Hokkaido, Japan
| | - Toshio Ohara
- Department of Pediatrics, Tomakomai City Hospital, Hokkaido, Japan
| | - Masaki Yoshida
- Department of Pediatrics, Yakumo General Hospital, Hokkaido, Japan
| | | | - Atsuko Noguchi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Wakako Kikuchi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Shoko Tokutake-Hirose
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Makoto Fujimori
- Department of Pediatrics, Tokyo Women's Medical University Yachiyo Medical Center, Chiba, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Hyogo, Japan
| |
Collapse
|
9
|
Jeon K, Lee SK, Jeong S, Song W, Kim HS, Kim JS, Shin KS, Kim HS. Trends in the detection of viruses causing gastroenteritis over a 10-year period and impact of nonpharmaceutical interventions. J Clin Virol 2024; 172:105676. [PMID: 38636263 DOI: 10.1016/j.jcv.2024.105676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Viral gastroenteritis continues to be a leading cause of death in low-income countries. The impact of nonpharmaceutical interventions (NPIs) on the transmission of gastroenteritis-causing viruses during the COVID-19 pandemic is understudied. OBJECTIVES To investigate the 10-year trends of enteric viruses and estimate the impact of implementing and mitigating NPIs. STUDY DESIGN Data regarding norovirus, rotavirus, adenovirus, astrovirus, and sapovirus detection were collected from five Korean hospitals between January 2013 and April 2023. We compared positivity between the pre-pandemic, pandemic, and post-pandemic periods. The causal effects of implementing and mitigating NPIs were quantified using the Bayesian Structural Time Series (BSTS) model. RESULTS Norovirus was most frequently detected (9.9 %), followed by rotavirus (6.7 %), adenovirus (3.3 %), astrovirus (1.4 %), and sapovirus (0.6 %). During the pandemic, the positivity of all five viruses decreased, ranging from -1.0 % to -8.1 %, with rotavirus showing the greatest decrease. In the post-pandemic period, positivity rebounded for all viruses except for rotavirus. The BSTS model revealed that NPI implementation negatively affected the detection of all five viruses, resulting in reductions ranging from -73.0 % to -91.0 % compared to the prediction, with rotavirus being the least affected. Conversely, NPI mitigation positively affected the detection of all viruses, ranging from 79.0 % to 200.0 %, except for rotavirus. CONCLUSIONS Trends observed over 10 years show that NPIs have had a major impact on changes in enteric virus detection. The effect of vaccines, in addition to NPIs, on rotavirus detection requires further investigation. Our findings emphasize the importance of NPIs in infection control and prevention.
Collapse
Affiliation(s)
- Kibum Jeon
- Department of Laboratory Medicine, Hallym University Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07247, Republic of Korea
| | - Su Kyung Lee
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, 18450, Republic of Korea
| | - Seri Jeong
- Department of Laboratory Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Republic of Korea
| | - Wonkeun Song
- Department of Laboratory Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441, Republic of Korea
| | - Han-Sung Kim
- Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, 14068, Republic of Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 05355, Republic of Korea
| | - Kyu Sung Shin
- Department of Laboratory Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, 24253, Republic of Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, 18450, Republic of Korea.
| |
Collapse
|
10
|
Kumblathan T, Liu Y, Crisol M, Pang X, Hrudey SE, Le XC, Li XF. Advances in wastewater analysis revealing the co-circulating viral trends of noroviruses and Omicron subvariants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170887. [PMID: 38350564 DOI: 10.1016/j.scitotenv.2024.170887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
Co-presence of enveloped and non-enveloped viruses is common both in community circulation and in wastewater. Community surveillance of infections requires robust methods enabling simultaneous quantification of multiple viruses in wastewater. Using enveloped SARS-CoV-2 Omicron subvariants and non-enveloped norovirus (NoV) as examples, this study reports a robust method that integrates electronegative membrane (EM) concentration, viral inactivation, and RNA preservation (VIP) with efficient capture and enrichment of the viral RNA on magnetic (Mag) beads, and direct detection of RNA on the beads. This method provided improved viral recoveries of 80 ± 4 % for SARS-CoV-2 and 72 ± 5 % for Murine NoV. Duplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays with newly designed degenerate primer-probe sets offered high PCR efficiencies (90-91 %) for NoV (GI and GII) targets and were able to detect as few as 15 copies of the viral RNA per PCR reaction. This technique, combined with duplex detection of NoV and multiplex detection of Omicron, successfully quantified NoV (GI and GII) and Omicron variants in the same sets of 94 influent wastewater samples collected from two large wastewater systems between July 2022 and June 2023. The wastewater viral RNA results showed temporal changes of both NoV and Omicron variants in the same wastewater systems and revealed an inverse relationship of their emergence. This study demonstrated the importance of a robust analytical platform for simultaneous surveillance of enveloped and non-enveloped viruses in wastewater. The ability to sensitively determine multiple viral pathogens in wastewater will advance applications of wastewater surveillance as a complementary public health tool.
Collapse
Affiliation(s)
- Teresa Kumblathan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Mary Crisol
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiaoli Pang
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada; Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta T6G 2J2, Canada
| | - Steve E Hrudey
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
11
|
Boehm AB, Shelden B, Duong D, Banaei N, White BJ, Wolfe MK. A retrospective longitudinal study of adenovirus group F, norovirus GI and GII, rotavirus, and enterovirus nucleic acids in wastewater solids at two wastewater treatment plants: solid-liquid partitioning and relation to clinical testing data. mSphere 2024; 9:e0073623. [PMID: 38411118 PMCID: PMC10964402 DOI: 10.1128/msphere.00736-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Enteric infections are important causes of morbidity and mortality, yet clinical surveillance is limited. Wastewater-based epidemiology (WBE) has been used to study community circulation of individual enteric viruses and panels of respiratory diseases, but there is limited work studying the concurrent circulation of a suite of important enteric viruses. A retrospective WBE study was carried out at two wastewater treatment plants located in California, United States. Using digital droplet polymerase chain reaction (PCR), we measured concentrations of human adenovirus group F, enteroviruses, norovirus genogroups I and II, and rotavirus nucleic acids in wastewater solids two times per week for 26 months (n = 459 samples) between February 2021 and mid-April 2023. A novel probe-based PCR assay was developed and validated for adenovirus. We compared viral nucleic acid concentrations to positivity rates for viral infections from clinical specimens submitted to a local clinical laboratory to assess concordance between the data sets. We detected all viral targets in wastewater solids. At both wastewater treatment plants, human adenovirus group F and norovirus GII nucleic acids were detected at the highest concentrations (median concentrations greater than 105 copies/g), while rotavirus RNA was detected at the lowest concentrations (median on the order of 103 copies/g). Rotavirus, adenovirus group F, and norovirus nucleic acid concentrations were positively associated with clinical specimen positivity rates. Concentrations of tested viral nucleic acids exhibited complex associations with SARS-CoV-2 and other respiratory viral nucleic acids in wastewater, suggesting divergent transmission patterns.IMPORTANCEThis study provides evidence for the use of wastewater solids for the sensitive detection of enteric virus targets in wastewater-based epidemiology programs aimed to better understand the spread of enteric disease at a localized, community level without limitations associated with testing many individuals. Wastewater data can inform clinical, public health, and individual decision-making aimed to reduce the transmission of enteric disease.
Collapse
Affiliation(s)
- Alexandria B. Boehm
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | | | - Dorothea Duong
- Verily Life Sciences LLC, South San Francisco, California, USA
| | - Niaz Banaei
- Department of Pathology, School of Medicine, Stanford University, Palo Alto, California, USA
| | | | - Marlene K. Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Ushijima H, Hoque SA, Akari Y, Pham NTK, Phan T, Nishimura S, Kobayashi M, Sugita K, Okitsu S, Komoto S, Thongprachum A, Khamrin P, Maneekarn N, Hayakawa S. Molecular Evolution of GII.P31/GII.4_Sydney_2012 Norovirus over a Decade in a Clinic in Japan. Int J Mol Sci 2024; 25:3619. [PMID: 38612429 PMCID: PMC11011564 DOI: 10.3390/ijms25073619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Norovirus (NoV) genogroup II, polymerase type P31, capsid genotype 4, Sydney_2012 variant (GII.P31/GII.4_Sydney_2012) has been circulating at high levels for over a decade, raising the question of whether this strain is undergoing molecular alterations without demonstrating a substantial phylogenetic difference. Here, we applied next-generation sequencing to learn more about the genetic diversity of 14 GII.P31/GII.4_Sydney_2012 strains that caused epidemics in a specific region of Japan, with 12 from Kyoto and 2 from Shizuoka, between 2012 and 2022, with an emphasis on amino acid (aa) differences in all three ORFs. We found numerous notable aa alterations in antigenic locations in the capsid region (ORF2) as well as in other ORFs. In all three ORFs, earlier strains (2013-2016) remained phylogenetically distinct from later strains (2019-2022). This research is expected to shed light on the evolutionary properties of dominating GII.P31/GII.4_Sydney_2012 strains, which could provide useful information for viral diarrhea prevention and treatment.
Collapse
Affiliation(s)
- Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Yuki Akari
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Ngan Thi Kim Pham
- College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan;
| | - Tung Phan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | - Kumiko Sugita
- Sugita Children Clinic, Ibaraki, Osaka 567-0035, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Satoshi Komoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
| | | | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine and Emerging and Re-Emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine and Emerging and Re-Emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| |
Collapse
|