1
|
Biswas A, Chakraborty S. Variation in bioelectricity production in integrated CW-MFC: An insight into coliform inactivation affected by HRT and power density. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123527. [PMID: 39626384 DOI: 10.1016/j.jenvman.2024.123527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025]
Abstract
In the current study, domestic wastewater was treated in three identical vertical up-flow reactors; R1 (constructed wetland), R2 (CW-MFC), and R3 (unplanted CW-MFC) under different HRTs of 36 h (Phase 1), 24 h (Phase 2), and 18h (Phase 3). Periodic reduction of HRT from Phase 1 to Phase 3 resulted in deteriorated organics and fecal coliform removal by the reactors. R2 showed higher pollutant removal and voltage generation in every phase of the study compared to R1 and R3. R2 exerted 93%, 87%, and 57% mean COD removal during Phase 1, Phase 2, and Phase 3; with maximum open circuit voltage generated as 925 mV, 695 mV, and 429 mV respectively. Linear regression analysis showed that operating voltage and power density had significant effects on the variance of effluent fecal coliform concentration. The regression analysis also revealed that 36 h-24 h HRT was critical where power density influenced the pathogen inactivation considerably. Multiple batch studies revealed the main role of reactor media and plant roots was to support the attached microbial growth for biodegradation of the organics. Radial oxygen loss did not affect the anaerobic environment at the anode after 800 days of reactor operation.
Collapse
Affiliation(s)
- Anjishnu Biswas
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Saswati Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Rusyn I, Gómora-Hernández JC. Constructed wetland microbial fuel cell as enhancing pollutants treatment technology to produce green energy. Biotechnol Adv 2024; 77:108468. [PMID: 39437879 DOI: 10.1016/j.biotechadv.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The persistent challenge of water pollution, exacerbated by slow progress in ecofriendly technologies and accumulating pollutants, underscores the need for innovative solutions. Constructed Wetland Microbial Fuel Cell (CW-MFC) emerges as an intriguing environmental technology capable of adressing this issue by eliminating contaminants from wastewater while simultaneously producing green energy as an additional bonus. In recent years, CW-MFC technology has gained attention due to its sustainability and promising prospects for a circular waste-free industry. However, due to various technological and biological challenges, it has not yet achieved wide-scale application. This review examines the current state of CW-MFC technology and identifies both biotic and abiotic strategies for optimization through operational and structural improvements affecting biocomponents. Our review highlights several key findings: (1) Plants play an important role in reducing the system's inner resistance through mechanisms such as radial oxygen loss, evapotranspiration, and high photosynthetic flow, which facilitate electroactive bacteria and affect redox potential. (2) Plant characteristics such as root porosity, phloem and aerenchyma development, chlorophyll content, and plant biomass are key indicators of CW-MFC performance and significantly impact both pollutant removal and energy harvesting. (3) We expand the criteria for selecting suitable plants to include mesophytes and C3 pollutant-tolerant species, in addition to traditional aquatic and C4 plants. Additionally, the review presents several technical approaches that enhance CW-MFC efficiency: (1) design optimization, (2) use of novel materials, and (3) application of external electrical fields, aeration, light, and temperature adjustments. CW-MFCs are capable of nearly complete elimination of a wide range of contaminants, including organic matter (84 % ± 10), total nitrogen (80 % ± 7) and phosphorus (79 % ± 18) compounds, metals (86 % ± 10), pharmaceuticals (87 % ± 7), dyes (90 % ± 8), and other complex pollutants, while generating green energy. We hope our findings will be useful in optimizing CW-MFC design and providing insights for researchers aiming to advance the technology and facilitate its future scaling.
Collapse
Affiliation(s)
- Iryna Rusyn
- Department of Ecology and Sustainable Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera St., 12, Lviv 79013, Ukraine.
| | - Julio César Gómora-Hernández
- Division of Environmental Engineering, National Technological Institute of Mexico (TecNM) / Technological of Higher Studies of Tianguistenco, Tianguistenco 52650, Mexico.
| |
Collapse
|
3
|
Mittal Y, Srivastava P, Kumar N, Tripathy BC, Martinez F, Yadav AK. Nutrient removal in floating and vertical flow constructed wetlands using aluminium dross: An innovative approach to mitigate eutrophication. BIORESOURCE TECHNOLOGY 2024; 410:131205. [PMID: 39097238 DOI: 10.1016/j.biortech.2024.131205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
On global scale, eutrophication is one of the most prevalent environmental threats to water quality, primarily caused by elevated concentration of nutrients in wastewater. This study utilizes aluminum dross (AD), an industrial waste, to create a value-added material by improving its operational feasibility and application for removing phosphate and ammonium from water. The operational challenges of AD such as its powdered nature and effective operation under only extreme pH conditions were addressed by immobilizing in calcium alginate to form calcium alginate aluminium dross (Ca-Alg-Al dross) beads. These Ca-Alg-Al dross beads were further tested for phosphate and ammonium removal from natural wastewater in two different aqueous environment systems: (i) vertical flow constructed wetlands (VF-CWs) followed by Ca-Alg-Al dross beads fixed bed system and (ii) Ca-Alg-Al dross beads mounted floating constructed wetlands (FCW) for remediating polluted lentic ecosystems. Our results show maximum phosphate and ammonium removal of 85 ± 0.41 % and 93.44 %, respectively, in VF-CWs followed by Ca-Alg-Al dross beads fixed bed system. The Ca-Alg-Al dross beads mounted FCW system achieved maximum phosphate removal of 79.18 ± 8.56 % and ammonium removal of 65.45 ± 21.04 %. Furthermore, the treated water from the FCW system was assessed for its potential to inhibit algal growth by artificially inoculating treated water with natural algae to simulate eutrophic conditions. Interestingly, treated water from the FCW system was found capable of arresting the algal growth. Besides, scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and Fourier transform infrared (FTIR) spectroscopy confirmed the functional groups and surface properties and probable participation of multiple mechanisms including ion exchange, electrostatic attraction, and ligand complexation for phosphate and ammonium removal. Overall, these results offer a promising way to utilize AD for high-end applications in wastewater treatment.
Collapse
Affiliation(s)
- Yamini Mittal
- Ingenieurgesellschaft Janisch & Schulz mbH, Münzenberg 35516, Germany; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Pratiksha Srivastava
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Naresh Kumar
- Soil Chemistry, Wageningen University and Research, 6708 PB Wageningen, The Netherland
| | - Bankim Chandra Tripathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Fernando Martinez
- Chemical & Environmental Engineering Group, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain; Instituto de Investigación de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India; Chemical & Environmental Engineering Group, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain.
| |
Collapse
|
4
|
Paruch AM, Paruch L. Current status of microbial source tracking applications in constructed wetlands serving as nature-based solutions for water management and wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124076. [PMID: 38685556 DOI: 10.1016/j.envpol.2024.124076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Microbial source tracking (MST) has been recognised as an effective tool for determining the origins and sources of faecal contamination in various terrestrial and aquatic ecosystems. Thus, it has been widely applied in environmental DNA (eDNA) surveys to define specific animal- and human-associated faecal eDNA. In this context, identification of and differentiation between anthropogenic and zoogenic faecal pollution origins and sources are pivotal for the evaluation of waterborne microbial contamination transport and the associated human, animal, and environmental health risks. These concerns are particularly pertinent to diverse nature-based solutions (NBS) that are being applied specifically to secure water safety and human and ecosystem well-being, for example, constructed wetlands (CWs) for water and wastewater treatment. The research in this area has undergone a constant evolution, and there is a solid foundation of publications available across the world. Hence, there is an early opportunity to synthesise valuable information and relevant knowledge on this specific topic, which will greatly benefit future work by improving NBS design and performance. By selecting 15 representative research reports published over 20 years, we review the current state of MST technology applied for faecal-associated contamination measures in NBS/CWs throughout the world.
Collapse
Affiliation(s)
- Adam M Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research-NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway.
| | - Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research-NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway
| |
Collapse
|
5
|
Afzal M, Arslan M, Younus S, Müller JA, Usman M, Yasin M, Mehmood MA, Mehdi T, Islam E, Tauseef M, Iqbal S. A nature-based closed-loop wastewater treatment system at vehicle-washing facilities: From linear to circular economy. iScience 2024; 27:109361. [PMID: 38523776 PMCID: PMC10957447 DOI: 10.1016/j.isci.2024.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Pakistan, among the top five most water-stressed nations globally, grapples with water scarcity owing to inadequate treatment infrastructure and groundwater overextraction. We demonstrate a successful nature-based closed-loop system to treat wastewater from urban vehicle-washing facilities, previously reliant on groundwater. An eco-friendly integrated system containing floating treatment wetlands (FTWs), subsurface flow constructed wetlands (SSF-CWs), and sand filtration (SF) was designed and installed at three vehicle-washing facilities for wastewater treatment and reuse in a loop. While the system is still operational after years, a consistent and significant reduction in water quality indicators is recorded, successfully meeting the national environmental quality standards of Pakistan. By reducing per unit water treatment costs to as low as $0.0163/m³ and achieving payback periods under a year, the embrace of these closed-loop strategies vividly underscores the imperative of transitioning to a circular economy in the domains of wastewater treatment and resource conservation.
Collapse
Affiliation(s)
- Muhammad Afzal
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Muhammad Arslan
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Salman Younus
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Jochen A. Müller
- Institute for Biological Interfaces (IBG 5), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Momina Yasin
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tanveer Mehdi
- Toyota Lyallpur Motors, Sargodha Road, Faisalabad 38000, Punjab, Pakistan
| | - Ejazul Islam
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | | | - Samina Iqbal
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| |
Collapse
|