1
|
Yu Y, Zhang H, Yang F, Liu H. Integrated pharmacoanalysis, bioinformatics analysis, and experimental validation to identify the ingredients and mechanisms of Xiao-Luo-Wan in uterine fibroids treatment. PHARMACEUTICAL BIOLOGY 2025; 63:201-217. [PMID: 40219728 PMCID: PMC11999358 DOI: 10.1080/13880209.2025.2485905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
CONTEXT Xiao-Luo-Wan (XLW), a classical prescription in traditional Chinese medicine, has therapeutic effects on uterine fibroids (UFs). Herein, its anti-UF effects were examined using a systematic pharmacological method. OBJECTIVE To explore the active ingredients of XLW via mass spectrometry and its potential effects on UFs by network pharmacology, molecular docking, and experimental validation. MATERIALS AND METHODS A mass spectrometer was used to scrutinize the composition of the XLW drug-containing serum. The critical targets and potential mechanisms of XLW against UFs were predicted by network pharmacology and molecular docking. Next, human uterine leiomyoma cells (UMCs) were treated with 20%, 30%, or 40% XLW serum for 24 h, 48 h or 72 h. Cell viability was analyzed via a CCK-8 assay, and cell apoptosis and the cell cycle were examined via flow cytometry. The predicted targets were further identified by RT-PCR and western blotting. RESULTS There were 16 chemical components identified in XLW drug-containing serum, with 53 target genes predicated in the treatment of UFs. The molecular binding of core targets, including TRIM9, NF-κB and p38MAPK, was relatively stable to components, especially buergerinin B, cedrol and ent-15B-16-epoxy- kauan-17-ol. The in vitro experiments revealed that the IC50 of XLW in UMCs was 63.21%, and the anti-UF effects of XLW may be closely associated with targets that inhibit cell proliferation and promote cell apoptosis by regulating TRIM9, NF-κB and p38MAPK expression. DISCUSSION AND CONCLUSIONS The integration of mass spectrometry, network pharmacology, molecular docking and biological experiments revealed the key constituents of XLW and its pharmacological mechanism in UFs, which may help in the discovery of therapeutic agents for treating UFs.
Collapse
Affiliation(s)
- Yonghui Yu
- Gynecological Department of Traditional Chinese Medicine, China–Japan Friendship Hospital, Beijing, China
| | - Haojun Zhang
- Institute of Clinical Medical Sciences, China–Japan Friendship Hospital, Beijing, China
| | - Fang Yang
- Gynecological Department of Traditional Chinese Medicine, China–Japan Friendship Hospital, Beijing, China
| | - Hong Liu
- Gynecological Department of Traditional Chinese Medicine, China–Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Xia S, Yan C, Cai G, Xu Q, Zou H, Gu J, Yuan Y, Liu Z, Bian J. Gut dysbiosis exacerbates inflammatory liver injury induced by environmentally relevant concentrations of nanoplastics via the gut-liver axis. J Environ Sci (China) 2025; 155:250-266. [PMID: 40246463 DOI: 10.1016/j.jes.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 04/19/2025]
Abstract
As an emerging and potentially threatening pollutant, nanoplastics (NPs) have received considerable global attention. Due to their physical properties and diminutive size, NPs ingestion can more easily cross biological barriers and enter the human and animal body. Despite reports of hepatotoxicity associated with NPs, their impact and potential underlying mechanisms remain elusive. In this study, we investigated the impact of NPs at concentrations found in the environment on the gut flora, intestinal barrier function, liver pyroptosis, and inflammation in mice following 12 weeks of exposure. To further validate the involvement of gut flora in inflammatory liver damage caused by NPs, we utilized antibiotics to remove the intestinal flora and performed fecal microbiota transplantation. We confirmed that NPs exposure altered the gut microbiota composition, with a notable rise in the proportions of Alloprevotella and Ileibacterium while causing a decrease in the relative proportions of Dubosiella. This disruption also affected the gut barrier, increasing lipopolysaccharides in circulation and promoting liver pyroptosis. Importantly, mice receiving fecal transplants from NPs-treated mice showed intestinal barrier damage, liver pyroptosis, and inflammation. However, NPs effects on the intestinal barrier and liver pyroptosis were attenuated by antibiotics depletion of the commensal microbiota. In summary, our current research revealed that extended exposure to environmentally relevant concentrations of NPs resulted in inflammatory damage to the liver. Additionally, we have identified for the first time that imbalances in intestinal flora are crucial in liver pyroptosis induced by NPs.
Collapse
Affiliation(s)
- Sugan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chaoyue Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Guodong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Qingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Li Z, Gong Y, Okeke ES, Li D, Chen Y, Feng W, Zhao T, Yang L, Mao G, Wu X. Novel insights into DBP-induced zebrafish liver inflammatory damage: Ferroptosis activating the HMGB1-TLR4-NF-κB signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126395. [PMID: 40345373 DOI: 10.1016/j.envpol.2025.126395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/31/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Typical plasticizer dibutyl phthalate (DBP) has been demonstrated to induce hepatotoxicity in zebrafish, but the underlying molecular mechanisms remain incompletely elucidated. Numerous studies have shown that ferroptosis is involved in the pathophysiological progression of hepatic disease. However, it remains unclear whether ferroptosis is involved in the DBP-induced hepatotoxicity in zebrafish. Initially, histopathological analyses have preliminarily confirmed that DBP can activate inflammatory responses in the zebrafish liver. Further investigation revealed that DBP induces ferroptosis in the zebrafish liver, characterized by iron overload, lipid peroxidation, and aberrant activation of ferroptosis pathways. Furthermore, DBP exposure induced ferroptosis, disrupting cell membranes and subsequent release of HMGB1, which are sensed by immunocytes TLR4/NF-κB signaling pathways, thereby activating the innate immune response in a context-dependent manner. Moreover, the ferroptosis inhibitor Fer-1 effectively rescues the activation of HMGB1-TLR4/NF-κB-mediated immune processes. Overall, this work enriches the molecular mechanism of DBP-induced zebrafish liver inflammatory damage and provides a reliable biomarker for future environmental risk assessment of DBP.
Collapse
Affiliation(s)
- Zixu Li
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yacan Gong
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Dan Li
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Yao Chen
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Weiwei Feng
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China
| | - Guanghua Mao
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering Jiangsu University, 301 Xuefu Rd, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Zhong S, Shen H, Dai X, Liao L, Huang C. BAM15 inhibits endothelial pyroptosis via the NLRP3/ASC/caspase-1 pathway to alleviate atherosclerosis. Atherosclerosis 2025; 406:119226. [PMID: 40393254 DOI: 10.1016/j.atherosclerosis.2025.119226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS) is a chronic inflammatory disease contributing to major cardiovascular events. This study aimed to investigate the effects of BAM15, a mitochondrial uncoupler, on regulating the NLRP3/ASC/caspase-1 signaling pathway to suppress endothelial cell pyroptosis and mitigate AS. METHODS AS was induced in ApoE-/- mice through a high-fat diet (HFD), and the therapeutic effects of BAM15 (5 mg/kg/day, s. c.) were evaluated. Histological analyses, including HE staining and oil red O staining, were used to assess aortic pathology and lipid deposition. Serum inflammatory cytokines (IL-1β, IL-18) were quantified by ELISA. Mouse primary aortic endothelial cells (MAECs) were treated with oxidized low-density lipoprotein (ox-LDL) to simulate AS condition in vitro. Mitochondrial reactive oxygen species (mtROS) expression and oxidized (ox)-mtDNA content were detected by Mitosox staining and ELISA, respectively. Western blot was used to assess the expression of pyroptosis-related proteins, including GSDMD-NT, NLRP3, ASC, and cleaved-caspase-1. RESULTS BAM15 reduced atherosclerotic plaque formation, lipid deposition, and inflammation, and diminished mtROS expression and ox-mtDNA content in the AS mouse models. In both in vivo and in vitro experiments, BAM15 markedly inhibited the activation of the NLRP3 inflammasome, leading to reduced pyroptosis in endothelial cells. Activation of the NLRP3/ASC/caspase-1 signaling pathway by Nigericin partially reversed the protective effects of BAM15, underscoring the pivotal role of NLRP3 inflammasome inhibition in endothelial pyroptosis suppression. CONCLUSIONS BAM15 effectively inhibits endothelial cell pyroptosis by reducing mtROS production and ox-mtDNA release to suppress the NLRP3/ASC/caspase-1 signaling pathway, thereby alleviating AS in both in vivo and in vitro models.
Collapse
Affiliation(s)
- Su Zhong
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China; Cadre Ward, Army 73rd Group Military Hospital, Xiamen, 36100, Fujian, China
| | - Hui Shen
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaoman Dai
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Lianming Liao
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Chun Huang
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China; People's Hospital of Changji Hui Autonomous Prefecture, Changji, 831100, Xinjiang, China.
| |
Collapse
|
5
|
Xu R, Li L, Ke Y, An Z, Duan W, Guo M, Tan Z, Liu X, Liu Y, Guo H. The role of pyroptosis in environmental pollutants-induced multisystem toxicities. Life Sci 2025; 372:123632. [PMID: 40220954 DOI: 10.1016/j.lfs.2025.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
The global ecosystem is adversely affected by environmental pollutants, which have numerous deleterious consequences on both the environment and human health. A multitude of human organs and systems, including the neurological, digestive, cardiovascular, reproductive, and respiratory systems, can be adversely affected by these pollutants. Pyroptosis is a form of programmed cell death, primarily involving the Caspase-1/Gasdermin D (GSDMD) classical inflammasome pathway, Caspase-4/5/11/GSDMD non-classical inflammasome pathway, Caspase-3/8 pathway, and other signaling pathways, which induce cell death and regulate the occurrence of inflammatory responses. Pyroptosis plays an important role in a range of diseases, including cancer, neurodegenerative diseases and cardiovascular disease. Evidence has emerged in recent years indicating that environmental pollutants exert various toxic effects by modulating pyroptosis. In this review, we examine hepatotoxicity, cardiovascular toxicity, nephrotoxicity, neurotoxicity, pulmonary toxicity, reproductive toxicity and the related mechanisms caused by environmental pollutants through the regulation of pyroptosis. We aim to provide theoretical references for future toxicity research on environmental pollutants.
Collapse
Affiliation(s)
- Rui Xu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yijia Ke
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
6
|
Zhang H, Jiang Y, Song J, Wang S, Lu J, Wei F, Li X. Urinary exosomes exacerbate diabetic kidney disease by promoting NLRP3 inflammasome activation via the microRNA-516b-5p/SIRT3/AMPK pathway. Am J Physiol Endocrinol Metab 2025; 328:E911-E923. [PMID: 40337989 DOI: 10.1152/ajpendo.00527.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/10/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus. Urinary exosomal miRNAs play a prominent regulatory role in the pathogenesis of DKD, but the potential mechanisms remain largely unknown. Our research was designed to explain the pathogenesis of urine-derived exosomal microRNA-516b-5p (miR-516b-5p) in the DKD development. Urine-derived exosomes were identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. Immunofluorescence staining was used to detect cellular internalization. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis was performed to measure the levels of miR-516b-5p and SIRT3. The secretion of inflammatory cytokines and Caspase-1 activity were evaluated via ELISA and flow cytometry, respectively. Expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome markers and genes associated with the SIRT3/AMPK signaling pathway were measured using Western blot. Bioinformatics tools and dual-luciferase reporter gene assay were used to confirm the correlation between miR-516b-5p and SIRT3. Blood glucose and renal function indexes were determined by the corresponding commercial kits. Hematoxylin and eosin (H&E) staining was exploited to examine the renal pathological changes. MiR-516b-5p was memorably upregulated in HKB-20 cells exposed to DKD-Exo. DKD-Exo introduction led to an increase in Caspase-1 activity, promoted inflammatory response and NLRP3 inflammasome activity, and inactivation of SIRT3/AMPK signaling pathway, which was partially reversed by silencing miR-516b-5p. SIRT3 was identified as a target gene of miR-516b-5p. SIRT3 overexpression reversed the influences of DKD-Exo and miR-516b-5p mimic. In the in vivo model, DKD-Exo exacerbated streptozotocin (STZ)-induced kidney injury through promoting inflammatory response and activating the NLRP3 inflammasome. Urinary exosomal miR-516b-5p plays a key role in DKD by promoting inflammatory response and activating the NLRP3 inflammasome through the SIRT3/AMPK pathway.NEW & NOTEWORTHY Urinary exosomal miR-516b-5p plays a key role in diabetic kidney disease (DKD) by promoting inflammatory response and NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation through the SIRT3/AMPK pathway.
Collapse
Affiliation(s)
- Haiying Zhang
- Department of Endocrine Metabolism, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People's Hospital, Chengdu, People's Republic of China
| | - Yubo Jiang
- Department of Nephrology, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, People's Republic of China
| | - Jun Song
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Traditional Chinese Medicine of Chengdu Medical College, XinDu District Hospital of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Shaoqing Wang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, People's Republic of China
| | - Jianhong Lu
- Department of Clinical Medicine, School of Clinical Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Fuxin Wei
- Department of Clinical Medicine, School of Clinical Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xiu Li
- School of Basic Medical Sciences, Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, People's Republic of China
| |
Collapse
|
7
|
Yu R, Shi R, Chen J, Zheng X, Yu R. Investigating the Mechanism of the Fuzheng Huayu Formula in Treating Cirrhosis through Network Pharmacology, Molecular Docking, and Experimental Verification. ACS OMEGA 2025; 10:19019-19032. [PMID: 40385224 PMCID: PMC12079202 DOI: 10.1021/acsomega.5c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
Cirrhosis, characterized by liver fibrosis and structural remodeling, is a leading cause of liver cancer. The Fuzheng Huayu formula (FZHY) has been approved for treating liver fibrosis in China since 2002, but its effects and mechanisms on cirrhosis remain largely unknown. This study employed network pharmacology, molecular docking, and in vitro experiments to elucidate the specific mechanisms of FZHY against liver cirrhosis. First, intersecting genes between FZHY and cirrhosis were obtained from the Chinese Medicine System Pharmacology Database, the Swiss Target Prediction online platform, UniProt, GeneCards, DisGeNET, and OMIM. The STRING database was used to construct a protein-protein interaction network. Subsequently, Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed, followed by molecular docking analysis to verify binding affinities between active ingredients and candidate targets. These analyses provided a theoretical basis for subsequent experimental research. Finally, we identified 117 FZHY target genes associated with cirrhosis and constructed a drug-component-target-cirrhosis-pathway network. Enrichment analysis revealed the AGE-RAGE signaling pathway in diabetic complications as a key pathway. Molecular docking showed that Isotanshinone II had the highest affinity for CHUK, IKBKB, and MAPK14. In vitro experiments demonstrated that Isotanshinone II dose-dependently reduced the mRNA expression of COL1A1 and α-SMA, as well as the protein levels of MAPK p38, IKKβ, and NF-κB p65 in LX-2 cells. These results revealed the underlying mechanism by which Isotanshinone II in FZHY inhibited LX-2 cell activation and collagen production through suppression of the MAPK/NF-κB signaling pathway. These findings support Isotanshinone II as a promising compound for cirrhosis targeting the MAPK/NF-κB pathway. Further research is warranted to explore the bioavailability of Isotanshinone II and to optimize its structure for clinical applications.
Collapse
Affiliation(s)
- Ruixue Yu
- Medicine
College of Pingdingshan University, Pingdingshan 467000, China
| | - Run Shi
- Medicine
College of Pingdingshan University, Pingdingshan 467000, China
| | - Jinghua Chen
- Northwest
Institute of Plateau Biology, Chinese Academy
of Sciences, Xining 810008, China
| | - Xinhua Zheng
- Medicine
College of Pingdingshan University, Pingdingshan 467000, China
| | - Ruitao Yu
- Qinghai
Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy
of Sciences, Xining 810008, China
| |
Collapse
|
8
|
Ji R, Yang Y, Bian B, Zhang Y, Wang F, Jia Y. Exposure to Polyethylene Terephthalate Microplastic Induces Mouse Liver Fibrosis Through Oxidative Stress and p38 MAPK/p65 NF-κB Signaling Pathway. J Appl Toxicol 2025. [PMID: 40312270 DOI: 10.1002/jat.4797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025]
Abstract
Microplastic (MP) pollution has garnered attention due to its potential impact on living organisms. Among these, polyethylene terephthalate microplastics (PET-MPs) are frequently detected in both environmental samples and human tissues. Despite this, the effects of PET-MPs on liver damage and fibrosis in mammals remain insufficiently understood. This study demonstrated that oral exposure to PET-MPs at doses of 1 mg/day (with a diameter of 1 μm) over 42 days resulted in inhibited weight gain and altered organ coefficients in male mice, suggesting possible liver damage. Using HE and Masson staining revealed pathological changes in the livers of exposed mice, such as hepatocyte swelling, inflammatory cell infiltration, and collagen deposition. Liver function tests confirmed elevated serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Further, the elevated levels of oxidative stress markers, along with the enhanced expression of proteins related to the p38 MAPK/p65 NF-κB signaling pathway as revealed by western blot analysis, both of which are strongly associated with liver damage and fibrosis. To further elucidate these mechanisms, experiments involving N-acetylcysteine (NAC) to counteract oxidative stress and SB203580 to inhibit p38 MAPK activation demonstrated that both interventions effectively mitigated liver fibrosis. Exposure to PET-MPs may trigger liver injury and fibrosis in mice. During this process, oxidative stress and the p38 MAPK/p65 NF-κB signaling pathway may play significant mediating roles.
Collapse
Affiliation(s)
- Rihao Ji
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yanfang Yang
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Bohao Bian
- Hulunbuir Center for Disease Control and Prevention, Hulunbuir, China
| | - Yafeng Zhang
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuqiao Jia
- School of Public Health, Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
9
|
Shang DF, Xu WQ, Zhao Q, Zhao CL, Wang SY, Han YL, Li HG, Liu MH, Zhao WX. Molecular mechanisms of pyroptosis in non-alcoholic steatohepatitis and feasible diagnosis and treatment strategies. Pharmacol Res 2025; 216:107754. [PMID: 40306603 DOI: 10.1016/j.phrs.2025.107754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Pyroptosis is a distinct form of cell death that plays a critical role in intensifying inflammatory responses. It primarily occurs via the classical pathway, non-classical pathway, caspase-3/6/7/8/9-mediated pathways, and granzyme-mediated pathways. Key effector proteins involved in the pyroptosis process include gasdermin family proteins and pannexin-1 protein. Pyroptosis is intricately linked to the onset and progression of non-alcoholic steatohepatitis (NASH). During the development of NASH, factors such as pyroptosis, innate immunity, lipotoxicity, endoplasmic reticulum stress, and gut microbiota imbalance interact and interweave, collectively driving disease progression. This review analyzes the molecular mechanisms of pyroptosis and its role in the pathogenesis of NASH. Furthermore, it explores potential diagnostic and therapeutic strategies targeting pyroptosis, offering new avenues for improving the diagnosis and treatment of NASH.
Collapse
Affiliation(s)
- Dong-Fang Shang
- Henan University of CM, Zhengzhou 450000, China; The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Wen-Qian Xu
- Henan University of CM, Zhengzhou 450000, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Chen-Lu Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Si-Ying Wang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Yong-Li Han
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - He-Guo Li
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Ming-Hao Liu
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Wen-Xia Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| |
Collapse
|
10
|
Hu T, Chen M, Tian S, Luo P, Zhang J. Mechanistic Studies on the Role of IL-17/NLRP3 in Arsenic-Induced Activation of Hepatic Stellate Cells Through Hepatocyte Proptosis. TOXICS 2025; 13:287. [PMID: 40278603 PMCID: PMC12031523 DOI: 10.3390/toxics13040287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 04/26/2025]
Abstract
Long-term exposure to arsenic, a prevalent environmental contaminant, has been implicated in the pathogenesis of various hepatic conditions. Hepatic stellate cells (HSCs) are central to the development of liver fibrosis. Recently, the involvement of interleukin-17 (IL-17) and the NOD-like receptor protein 3 (NLRP3) inflammasome in hepatic pathologies has attracted significant research interest. Hepatocyte pyroptosis, a form of programmed cell death, is a critical factor in the occurrence of inflammation. The objective of this study was to investigate the specific roles of IL-17 and NLRP3 in the arsenic-induced activation of HSCs through hepatocyte pyroptosis. We pretreated MIHA cells with MCC950 (1 and 5 μM) and secukinumab (10 and 100 nM) for 4 h, then with NaAsO2 (25 μM) for 24 h at 37 °C under 5% CO2. After incubation, the cell-culture supernatant was collected and mixed with serum-free high-glucose DMEM medium in a 1:1 ratio to prepare the conditioned medium, which was subsequently used for the culture of LX-2 cells. The results showed that exposure to NaAsO2 induced hepatocellular pyroptosis, which led to the release of the inflammatory cytokines IL-18 and IL-1β and subsequent activation of HSCs. Treatment with the inhibitors MCC950 and secukinumab significantly reduced the secretion of Extracellular matrix (ECM) components and attenuated HSC activation. These results demonstrate that blocking the IL-17 and NLRP3 signaling pathways significantly reduces HSC activation and attenuates hepatic fibrogenesis. These results provide novel molecular targets for the prevention and treatment of arsenic-related liver fibrosis.
Collapse
Affiliation(s)
- Ting Hu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (T.H.); (M.C.); (S.T.)
| | - Mei Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (T.H.); (M.C.); (S.T.)
| | - Sai Tian
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (T.H.); (M.C.); (S.T.)
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (T.H.); (M.C.); (S.T.)
| | - Jiangping Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; (T.H.); (M.C.); (S.T.)
- Guiyang Public Health Clinical Center, Guiyang 550003, China
| |
Collapse
|
11
|
Guan W, Jiang X, Yu X, Li X, Li K, Liu H, Wang X, Liu X, Hou J, Wu Q, Liu C. Multi-Omics Analysis of the Molecular Mechanisms by Which Extract of Artemisia selengensis Turcz. Ameliorates DBP-Induced Liver Injury. Chem Biodivers 2025; 22:e202401963. [PMID: 39641643 DOI: 10.1002/cbdv.202401963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Artemisia selengensis Turcz. is a perennial herb belonging to the genus Artemisia in the family Asteraceae. Known for its nutrient richness, distinct flavor, and medicinal properties, Artemisia selengensis Turcz. has garnered attention. However, its efficacy, particularly in alleviating hepatic injury, remains underexplored. This study aims to assess the therapeutic potential of the 50% ethanol extract of Artemisia selengensis Turcz. (ASTE) in a mouse model of dibutyl phthalate (DBP)-induced liver injury. Through multi-omics analysis, including transcriptomics, metabolomics, and intestinal flora examination, we explored the pathways and key targets of ASTE in treating liver injury. Network pharmacology further identified the crucial components of ASTE for liver injury treatment. Our findings indicate that ASTE affects intestinal flora such as Adlercreutzia through flavonoids, particularly naringin and epicatechin. Additionally, key genes in the PPAR pathway, such as fatty acid-binding protein 3 (Fabp3), fatty acid-binding protein 5 (Fabp5), 3-hydroxyacyl-CoA dehydrogenase (Ehhadh), and phospholipid transfer protein (Pltp), influence glycerophospholipid metabolism, contributing to liver injury amelioration. This study sheds light on the molecular mechanisms underlying ASTE's hepatoprotective effects, laying the groundwork for its potential application as a functional food.
Collapse
Affiliation(s)
- Wenying Guan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Xiaotan Jiang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Xiaohua Yu
- Yangxin County Specialty Service Centre, Huangshi, Hubei Province, China
| | - Xinwei Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Kangxing Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Huan Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Xinyi Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Chen W, Ge L, Zhang C. The molecular mechanism of berberine affecting psoriasis skin inflammation by regulating keratinocyte pyroptosis via the p38 MAPK/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3843-3859. [PMID: 39365309 DOI: 10.1007/s00210-024-03461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Berberine (BBR), a Rhizoma Coptis-sourced isoquinoline alkaloid, is an effective drug for psoriasis treatment with its therapeutic mechanism remaining unclear. We delved into the mechanism of BBR affecting psoriatic skin inflammation by regulating keratinocyte pyroptosis. A psoriasis-like skin inflammation mouse model was induced by imiquimod (IMQ) and treated with BBR and a p38 activator anisomycin. Human epidermal keratinocytes (HEKs) were stimulated with five chemokines (M5) [interleukin (IL)-17A, IL-22A, oncostatin M, tumor necrosis factor-α, IL-1α] to simulate psoriasis immune microenvironment, then treated with BBR and anisomycin. Psoriasis skin lesions, skin tissue damage, cell viability and death, and gasdermin D-N (GSDMD-N) and NOD-like receptor protein 3 (NLRP3) positive cell numbers were assessed. The p38 mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB) pathway and levels of the NLRP3/GSDMD pathway-related proteins and inflammatory factors were determined. BBR alleviated M5-induced HEK pyroptosis by inactivating NLRP3 inflammasomes. BBR inhibited the p38 MAPK/NF-κB pathway, and its effects on HEKs were partly averted by activating the p38 MAPK/NF-κB pathway. BBR repressed NLRP3 inflammasome activation and pyroptosis by inhibiting the p38 MAPK/NF-κB pathway. Collectively, BBR suppressed keratinocyte NLRP3/GSDMD pathway pyroptosis by suppressing the p38 MAPK/NF-κB pathway, thereby affecting psoriasis skin inflammation.
Collapse
Affiliation(s)
- Wenfang Chen
- Department of Dermatovenereology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Taian, 271000, China
| | - Lingzhi Ge
- Department of Dermatovenereology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Taian, 271000, China
| | - Chao Zhang
- Department of Dermatovenereology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Taian, 271000, China.
| |
Collapse
|
13
|
Qiu SQ, Tang YJ, Hu LX, Pei CL, Hong DC, Lin DY, Kang G, Zhou SZ, Liang BL, Chen SJ, Bai H, Ying GG. Unveiling airborne threats: Vertical profiles of multiple emerging pollutants in PM 2.5 across the urban atmosphere of Southern China. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137056. [PMID: 39752836 DOI: 10.1016/j.jhazmat.2024.137056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 12/30/2024] [Indexed: 03/12/2025]
Abstract
PM2.5 has a detrimental impact on human health and has become a focus of widespread concern. The tempo-spatial distribution of emerging pollutants has been extensively studied, while there is a scarcity of understanding their vertical distribution in atmospheric environment. Here we investigated the vertical profiles of phthalate esters (PAEs), organophosphate esters (OPEs), neonicotinoids (NEOs), and per-and polyfluorinated substances (PFASs) in PM2.5 at ground level (4.5 m), 118 m, and 488 m in an urban environment. Results reveal that the PAEs in PM2.5 had higher concentrations than OPEs, NEOs, and PFASs. Vertical pollutant distribution generally exhibits a decline in concentration with increasing altitude. However, the opposite pattern also occurs, especially for NEOs and PFASs. The underlying mechanisms are multifaceted, encompassing the physicochemical characteristics of pollutants, meteorological parameters, and air-mass trajectories, each contributing to the vertical profile in varying degree. Additionally, the indoor health risks posed by outdoor pollutants at 118 m and 488 m were evaluated and found to be comparable to the outdoor risks at the ground. To our knowledge, this is the first exploration of the vertical characteristics of emerging pollutants at heights exceeding 100 meters, which provides a crucial reference for the prevention and control of emerging pollutants.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yan-Jun Tang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Cheng-Lei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510308, China
| | - Da-Chi Hong
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510308, China
| | - Da-Ying Lin
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Geng Kang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Sheng-Zhen Zhou
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Bao-Ling Liang
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510308, China
| | - She-Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
14
|
Li K, Wang K, Xu T, Lyu C, Yang X, Lin H, Xu S. New insights into quercetin's attenuation of TBBPA-induced injury to MCEC cells: Involvement of the p38/NF-κB pathway and pyroptosis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124425. [PMID: 39933375 DOI: 10.1016/j.jenvman.2025.124425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/15/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
With the widespread application of the brominated flame retardant tetrabromobisphenol A (TBBPA), it poses a threat to human health, especially intestinal health. Quercetin (Que) is a flavonol compound with anti-inflammatory and antioxidant properties. However, whether Que can prevent TBBPA-induced intestinal toxicity remains unknown. Therefore, in this study, a TBBPA (75 μM) exposure model and a Que (0.1 μM) treatment model were established using mouse colon epithelial cells (MCEC). The p38 pathway, pyroptosis, and intestinal barrier function-related indicators were analyzed using an oxidative stress reagent kit, immunofluorescence staining, western blotting, and qRT-PCR. The results showed that TBBPA exposure dose-dependently reduced cell viability, impaired the antioxidant function of cells, promoted ROS accumulation, activated the p38 signalling pathway, induced pyroptosis, and decreased the expression levels of ZO-1, Occludin, and Claudin-1. Notably, Que treatment significantly restored the antioxidant enzyme activity in MCEC cells, reduced the ROS level, inhibited the p38 axis, alleviated MCEC cell pyroptosis, and recovered the intestinal barrier function. Further studies found that using LX-3 (a p38 activator) treatment disrupted the therapeutic effect of Que. In summary, Que can exert a protective effect by inhibiting the ROS-mediated p38 pathway, thereby alleviating the damage of TBBPA to MCEC cells.
Collapse
Affiliation(s)
- Ke Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chencong Lyu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xuejiao Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
15
|
Zhang M, Li L, Li S. The Role of miR-150-5p/SOCS1 Pathway in Arsenic-Induced Pyroptosis of LX-2 Cells. Biol Trace Elem Res 2025; 203:822-834. [PMID: 38689138 DOI: 10.1007/s12011-024-04211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
This study aims to explore the mechanism of pyroptosis of human hepatocyte LX-2 cells induced by NaAsO2 through the miR-150-5p/SOCS1 pathway. LX-2 cells were transfected with different concentrations of NaAsO2, miR-150-5p inhibitor, and SOCS1 agonist. Cell activity, cell pyroptosis, and the expression of related genes and proteins were detected by scanning electron microscopy, CCK-8, qRT-PCR, western blot, and immunofluorescence. Compared with the control group, 10 µmol/L and 20 µmol/L NaAsO2 significantly elevated the protein expression levels of the pyroptosis-related proteins NLRP3, GSDMD, GSDMD-N, caspase1, and cleaved caspase1 as well as the mRNA levels of NLRP3, GSDMD, caspase1, IL-18, and IL-1β. The typical pyroptosis with swelling and rupture of the plasma membrane was observed through scanning electron microscopy. The expression of miR-150-5p of the NaAsO2 intervention group increased, while the expression of SOCS1 decreased; then the level of NF-κB p65 elevated. With co-treatment of miR-150-5p inhibitor, SOCS1 agonist, and NaAsO2, the cell pyroptosis was attenuated, and the expressions of NLRP3, caspase1, GSDMD, GSDMD-N, IL-18, IL-1β, p65 of the group of miR-150-5p inhibitor and NaAsO2 group, and of the group of SOCS1 agonist and NaAsO2 reduced compared with the NaAsO2 group. Arsenic exposure promotes miR-150-5p, inhibits the expression of SOCS1, and activates the NF-κB/NLRP3 pathway in LX-2 cell pyroptosis.
Collapse
Affiliation(s)
- Mengyao Zhang
- Department of Preventive Medicine, College of Medicine, Shihezi University, Shihezi, 832000, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, China
| | - Linzhi Li
- Department of Preventive Medicine, College of Medicine, Shihezi University, Shihezi, 832000, China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, China
| | - Shugang Li
- School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Alam MS, Maowa Z, Hasan MN. Phthalates toxicity in vivo to rats, mice, birds, and fish: A thematic scoping review. Heliyon 2025; 11:e41277. [PMID: 39811286 PMCID: PMC11731458 DOI: 10.1016/j.heliyon.2024.e41277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns. Methods Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines. The search used the term "toxicity of phthalates in vivo, animals or birds or fish." Original research articles published between 2010 and 2024 describing in vivo toxicity in rat, mouse, bird, and fish models, were included. Conversely, articles that did not meet the above criteria were excluded from this scoping review. Two authors independently extracted data using data extraction tools based on themes, while a third arbitrated if consensus was not met. A senior researcher developed the themes, which were further refined through discussions. Data analysis involved quantitative (percentage of studies) and qualitative (content analysis) methods. Results Of the 8180 articles screened, 153 met the inclusion criteria. Most of them were published after 2015 (74.50 %). The scoping review showed that DEHP (56.20 %) and DBP (21.57 %) were the most studied phthalates followed by BBP, DiBP, DMP, DEP, BBOP, and DiNP. Scarce data were available on DnOP, DPHP, DPeP, DUDP, DTDP, DMiP, and DiOP. Interestingly, studies of combinations of two or more phthalates were also present. The main laboratory animals employed were rats (48.37 %) and mice (39.87 %), while the least studied were birds (5.22 %) and fish (6.53 %). Most studies related to testicular toxicity (37.60 %), hepatotoxicity (23.53 %), and ovarian toxicity (18.30 %) investigations, while the rest consisted of neurotoxicity (6.88 %), renal toxicity (6.53 %), and thyroid toxicity studies (4.57 %). Studies focused on oxidative stress (34.64 %), apoptosis (22.22 %), steroid hormone deprivation (20.26 %), lipid metabolism disorder (11.76 %), and immunotoxicity (5.88 %) as mechanisms of toxicity. The most commonly used techniques were H&E, RT-qPCR, ROS assay, WB, IHC, ELISA, RIA, TUNEL, TEM, IFM, FCM, and RNA-seq. Conclusions DEHP and DBP are the most toxic and studied phthalates, while BBP, DiNP, DiBP, DiDP, BBOP, DMP, and DiOP and their combinations require more accurate studies to confirm their toxic effects on human health and mechanisms of action. These will assist policymakers in adopting strategies to minimize public exposure and adverse effects.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Zannatul Maowa
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Nazmol Hasan
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
17
|
Chen R, Hu J, Zhang Y, Liu Y, Zhu J, Pan Z, Yang H, Wang Q, Chen Y, Tang S, Min B. Total glucosides of paeony ameliorates chemotherapy-induced neuropathic pain by suppressing microglia pyroptosis through the inhibition of KAT2A-mediated p38 pathway activation and succinylation. Sci Rep 2024; 14:31875. [PMID: 39738348 PMCID: PMC11686281 DOI: 10.1038/s41598-024-83207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a prevalent side effect of chemotherapy. Total glucosides of paeony (TGP) have been shown to be effective in pain management. This study aimed to investigate the efficacy and mechanism of TGP in alleviating CINP. Sprague-Dawley rats were treated with oxaliplatin to establish CINP models, and BV2 microglia were exposed to lipopolysaccharides (LPS) to induce pyroptosis. The impact of TGP on CINP was assessed by measuring mechanical withdrawal threshold (MWT), cold pain threshold (CPT), and thermal pain threshold (TPT), as well as inflammatory factor levels. Pyroptosis was evaluated using flow cytometry, lactate dehydrogenase (LDH) release, and pyroptosis marker levels. Quantitative real-time PCR and molecular docking were employed to identify TGP targets, while phospho-kinase arrays, western blotting, and co-immunoprecipitation were used to elucidate the mechanism. Results indicated that TGP increased MWT, CPT, and TPT and inhibited inflammatory factor release in CINP rats. Furthermore, TGP suppressed LPS-induced pyroptosis and downregulated KAT2A expression in BV2 cells; this suppression was reversed by KAT2A overexpression. Mechanistically, KAT2A overexpression activated the p38 pathway and promoted p38 succinylation at K295. KAT2A knockdown inhibited pyroptosis in LPS-induced BV2 cells, an effect that was reversed by the p38 activator metformin. Additionally, the improvements in MWT, CPT, TPT, and inflammatory factor levels observed in CINP rats treated with TGP were negated by KAT2A overexpression. In conclusion, TGP alleviated CINP by suppressing microglial pyroptosis through inhibition of the KAT2A-mediated p38 pathway activation and succinylation. This study provides insights into a potential new therapeutic approach for CINP.
Collapse
Affiliation(s)
- Rong Chen
- Department of Pain, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jiantao Hu
- Department of Respiratory, Qixingguan District People's Hospital in Bijie City, Bijie, Guizhou, China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Yunyan District, Guiyang, Guizhou, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jingsong Zhu
- Department of Pain, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zheng Pan
- Department of Neurosurgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qin Wang
- Department of Rheumatology and Hematology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Ying Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Yunyan District, Guiyang, Guizhou, China
| | - Songjiang Tang
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Yunyan District, Guiyang, Guizhou, China.
| | - Baojun Min
- Department of Anesthesiology, Qianxi People's Hospital, No. 38 Lisha East Road, Qianxi, Bijie, Guizhou, China.
| |
Collapse
|
18
|
Rostami A, Palomer X, Pizarro-Delgado J, Barroso E, Valenzuela-Alcaraz B, Crispi F, Nistal JF, Hurlé MA, García R, Wahli W, Vázquez-Carrera M. PPARβ/δ prevents inflammation and fibrosis during diabetic cardiomyopathy. Pharmacol Res 2024; 210:107515. [PMID: 39577755 DOI: 10.1016/j.phrs.2024.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a specific type of myocardial disease that often develops in patients suffering from diabetes, which has become the foremost cause of death among them. It is an insidious multifactorial disease caused by complex and partially unknown mechanisms that include metabolic dysregulation, local inflammation, fibrosis, and cardiomyocyte apoptosis. Despite its severity and poor prognosis, it often goes undiagnosed, and there are currently no approved specific drugs to prevent or even treat it. Peroxisome proliferator-activated receptor (PPAR)β/δ is a key metabolic regulator that has been proposed as a potential target for DCM due to its pleiotropic anti-inflammatory properties. Diabetes was induced by multiple low-dose streptozotocin (STZ) administration in wild-type and PPARβ/δ knockout male mice treated with the PPARβ/δ agonist GW0742 or vehicle. Human cardiomyocytes (AC16) and mouse atrial myocytes (HL-1) exposed to hyperglycemia and treated with PPARβ/δ agonists were also used. PPARβ/δ deletion in mice negatively impacted cardiac morphology and function, which was accompanied by interstitial fibrosis and structural remodeling of the heart. This phenotype was further exacerbated in knockout diabetic mice. At the molecular level, PPARβ/δ suppression resulted in increased expression of pro-inflammatory and pro-fibrotic markers. Some of these markers were also induced by diabetes in wild-type mice and were exacerbated in diabetic knockout mice. The activity of the transcription factors nuclear factor κB (NF-κB) and activator protein-1 (AP-1) correlated with most of these changes. Remarkably, PPARβ/δ activation partially prevented inflammation and fibrosis in the heart, as well as cardiac atrophy, induced during diabetes in mice, and also in cultured cardiomyocytes exposed to hyperglycemia. Finally, our results suggest that the beneficial effects of PPARβ/δ activation are mediated by the inhibition of mitogen-activated protein kinases (MAPK) activity and subsequent downregulation of the transcriptional activities of NF-κB and AP-1. Overall, the data suggest that PPARβ/δ agonists might be useful in preventing inflammation and fibrosis progression in DCM.
Collapse
Affiliation(s)
- Adel Rostami
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain.
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain
| | - Brenda Valenzuela-Alcaraz
- aBCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Rare Diseases (CIBERER), Barcelona, Spain
| | - Fátima Crispi
- aBCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Rare Diseases (CIBERER), Barcelona, Spain
| | - J Francisco Nistal
- Servicio de Cirugía Cardiovascular, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Departamento de Ciencias Médicas y Quirúrgicas, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Spanish Biomedical Research Center in Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, Santander, Spain
| | - María A Hurlé
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Raquel García
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, Lausanne CH-1015, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, Cedex, Toulouse F-31300, France
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona 08028, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid 28029, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat 08950, Spain.
| |
Collapse
|
19
|
Theodoropoulou E, Pierozan P, Marabita F, Höglund A, Karlsson O. Persistent effects of di-n-butyl phthalate on liver transcriptome: Impaired energy and lipid metabolic pathways. CHEMOSPHERE 2024; 368:143605. [PMID: 39442571 DOI: 10.1016/j.chemosphere.2024.143605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The environmental contaminant dibutyl phthalate (DBP) is reported to be hepatotoxic, but the underlying molecular pathways and pathological processes remain unclear. Here we used RNA-sequencing to characterize persistent hepatic transcriptional effects one week after the conclusion of five weeks oral exposure to 10 mg/kg/day or 100 mg/kg/day DBP in adult male mice. The exploratory transcriptome analysis demonstrated five differentially expressed genes (DEGs) in the 10 mg/kg/day group and 13 in the 100 mg/kg/day group. Gene Set Enrichment Analysis (GSEA), which identifies affected biological pathways rather than focusing solely on individual genes, revealed nine significantly enriched Reactome pathways shared by both DBP treatment groups. Additionally, we found 54 upregulated and one downregulated Reactome pathways in the 10 mg/kg/day DBP group, and 29 upregulated and 13 downregulated pathways in the 100 mg/kg/day DBP group. DBP exposure disrupted several key biological processes, including protein translation, protein folding, apoptosis, Hedgehog signaling, degradation of extracellular matrix and alterations in the energy/lipid metabolism. Subsequent liver tissue analysis confirmed that DBP exposure induced tissue disorganization, oxidative stress, lipid accumulation, increased TNF-α, ATP and glucokinase levels, and affected key metabolic proteins, predominantly in a dose-response manner. Overall, the results show that DBP can cause hepatic stress and damage and suggest a potential role for DBP in the development of non-alcoholic fatty liver disease, the most prevalent liver disease worldwide.
Collapse
Affiliation(s)
- Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Francesco Marabita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, 114 18, Sweden.
| |
Collapse
|
20
|
Liu M, Gao M, Shi X, Yin Y, Liu H, Xie R, Huang C, Zhang W, Xu S. Quercetin attenuates SiO 2-induced ZBP-1-mediated PANoptosis in mouse neuronal cells via the ROS/TLR4/NF-κb pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122948. [PMID: 39423623 DOI: 10.1016/j.jenvman.2024.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
With the increasing development of the society, silicon dioxide (SiO2) has been used in various fields, such as agriculture, food industry, etc., and its residues can pose a potential health threat to organisms. Quercetin (Que) is a potent free radical scavenger commonly found in plants. C57BL/6 mice were chosen to established a mouse model of SiO2 exposure and Que antagonism to investigate the mechanism of action of Que in rescuing the toxic damage of SiO2 on mouse cerebellum tissue. The results showed that cytoplasmic vacuolization, and inflammatory cell infiltration caused by SiO2 were alleviated by the addition of Que, and reduced oxidative stress in mouse cerebellum, alleviated the activation of TLR4 pathway induced by SiO2, and substantially reduced the occurrence of ZBP-1-mediated PANoptosis induced by SiO2 exposure in mouse cerebellum. In NS20Y cells, the oxidative stress activator (Elesclomol) and inhibitor N-acetyl cysteine (NAC), and the NF-κB activator 2 (NA2) were added. Elesclomol and NAC confirm the involvement of ROS in regulating the TLR4/NF-κB pathway, the TLR4/NF-κB pathway regulated ZBP-1-mediated PANoptosis in cerebellum and NS20Y cells induced by SiO2 exposure. In conclusion, the present experimental data suggest that Que mitigates the onset of ZBP-1-mediated PANoptosis in neuronal cells induced by SiO2 through the ROS/TLR4/NF-κB pathway. The present experimental findings help to understand the detoxification effect of Que in more tissues and provide an important reference for the rescue of organisms in long-term SiO2 environment.
Collapse
Affiliation(s)
- Meichen Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ruirui Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chenxi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenwen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
21
|
Zheng S, Li H, Dong H, Qi F, Zhang B, Yu Q, Lin B, Jiang H, Du H, Liu Y, Yu J. A preliminary study of T-2 toxin that cause liver injury in rats via the NF-kB and NLRP3-mediated pyroptosis pathway. Toxicon 2024; 249:108060. [PMID: 39117157 DOI: 10.1016/j.toxicon.2024.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
T-2 toxin is recognized as the most potent and prevalent secondary metabolite among monotrichous mycotoxins produced by Fusarium species. Multiple studies have substantiated the hepatotoxic effects of T-2 toxin. This study aimed to investigate whether NF-κB and NLRP3-mediated pyroptosis is involved in the underlying mechanism of T-2 toxin hepatotoxicity. We designed three groups of rat models, blank control; solvent control and T-2 toxin (0.2 mg/kg body weight/day), which were euthanized at week 8 after gavage staining of the toxin. Through HE staining and biochemical indicators associated with liver injury, we observed that T-2 toxin induced liver damage in rats. By Western blot analysis and qRT-PCR, we found that the expression levels of pyroptosis-related genes and proteins were significantly higher in the T-2 toxin group. In addition, we also found a significant increase in the expression of p-NF-κB protein, an upstream regulator of NLRP3. In conclusion, NF-κB and NLRP3-mediated pyroptosis may be involved in the mechanism of hepatotoxic action of T-2 toxin, which provides a new perspective.
Collapse
Affiliation(s)
- Shicong Zheng
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Haonan Li
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Hexuan Dong
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Fang Qi
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Bing Zhang
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Qian Yu
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Buyi Lin
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Hong Jiang
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Haoyu Du
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Ying Liu
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| | - Jun Yu
- NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University): No. 157, Health Care Road, Nangang District, Harbin, 150081, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province: No. 157, Health Care Road, Nangang District, Harbin, China.
| |
Collapse
|
22
|
Zhang Y, Ren L, Tian Y, Guo X, Wei F, Zhang Y. Signaling pathways that activate hepatic stellate cells during liver fibrosis. Front Med (Lausanne) 2024; 11:1454980. [PMID: 39359922 PMCID: PMC11445071 DOI: 10.3389/fmed.2024.1454980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Liver fibrosis is a complex process driven by various factors and is a key feature of chronic liver diseases. Its essence is liver tissue remodeling caused by excessive accumulation of collagen and other extracellular matrix. Activation of hepatic stellate cells (HSCs), which are responsible for collagen production, plays a crucial role in promoting the progression of liver fibrosis. Abnormal expression of signaling pathways, such as the TGF-β/Smads pathway, contributes to HSCs activation. Recent studies have shed light on these pathways, providing valuable insights into the development of liver fibrosis. Here, we will review six signaling pathways such as TGF-β/Smads that have been studied more in recent years.
Collapse
Affiliation(s)
- Youtian Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Long Ren
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yinting Tian
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaohu Guo
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yawu Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
23
|
Fletcher EJ, Stubblefield WS, Huff J, Santacruz-Márquez R, Laws M, Brehm E, Flaws JA. Prenatal exposure to an environmentally relevant phthalate mixture alters serum cytokine levels and inflammatory markers in the F1 mouse ovary. Toxicol Sci 2024; 201:26-37. [PMID: 38954831 PMCID: PMC11347776 DOI: 10.1093/toxsci/kfae084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Phthalates are used as plasticizers and solvents in consumer products. Virtually 100% of the US population has measurable exposure levels to phthalates, however, the mechanisms by which prenatal exposure to phthalate mixtures affects reproductive health in the offspring remain unclear. Thus, this study tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture promotes inflammation in F1 ovarian tissue. Pregnant CD-1 dams were dosed orally with vehicle control (corn oil) or phthalate mixture (20 μg/kg/d, 200 μg/kg/d, 200 mg/kg/d, 500 mg/kg/d). Pregnant dams delivered pups naturally and ovaries and sera from the F1 females were collected at postnatal day (PND) 21, PND 60, 3 mo, and 6 mo. Sera were used to measure levels of C-reactive protein (CRP). Ovaries and sera were used for cytokine array analysis. RNA was isolated from F1 ovaries and used to quantify expression of selected cytokine genes. Prenatal exposure to the mixture significantly increased the levels of CRP at 200 µg/kg/d on PND 21 compared with controls. The mixture altered 6 immune factors in sera at PND 21 and 33 immune factors in the ovary and sera at 6 mo compared with controls. The mixture increased ovarian expression of cytokines at PND 21 and decreased ovarian expression of cytokines at 6 mo compared with controls. These data suggest that prenatal exposure to a phthalate mixture interferes with the immune response in F1 female mice long after initial exposure.
Collapse
Affiliation(s)
- Endia J Fletcher
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Winter S Stubblefield
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Justin Huff
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Mary Laws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Emily Brehm
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| |
Collapse
|
24
|
Wang Y, Cui C, Zhao W, Tian X, Liu P, Wei L, Zhu Z, Liu M, Fu R, Jia L. WIP1-mediated regulation of p38 MAPK signaling attenuates pyroptosis in sepsis-associated acute kidney injury. Immunobiology 2024; 229:152832. [PMID: 38943814 DOI: 10.1016/j.imbio.2024.152832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) is a serine/threonine phosphatase that plays a significant role in various physiological processes. However, the involvement of WIP1 in kidney remains unclear. Lipopolysaccharide (LPS) was administered to induce acute injury in mice and human kidney 2 (HK2) cells in the study. The WIP1 inhibitor, CCT007093, was administered both in vitro and in vivo to assess its effect on kidney. The single-cell sequencing (scRNA-seq) data revealed that Ppm1d mRNA reached peak on day 2 following unilateral ischemia-reperfusion injury (uni-IRI) in mice, especially in the proximal renal tubules during repair phase. Compared to the control group, WIP1 protein exhibited a significant increase in renal tubules of patients with acute tubular injury (ATI) and mice with LPS-induced acute kidney injury (AKI), as well as in LPS-injured HK2 cells. In vitro experiments showed that CCT007093 increased the protein levels of NLRP3, cleaved-Caspase1, GSDMD-N and IL-1β in HK2 cells and further reduced the viability of LPS-stimulated HK2 cells. In vivo experiments showed that inhibition of WIP1 activity with CCT007093 further increased cleaved-Caspase1, GSDMD-N protein levels in kidney tissue from mice with LPS-induced AKI. In addition, LPS induces phosphorylation of p38 MAPK, a key regulator of pyroptosis, which is further activated by CCT007093. In conclusion, inhibition of WIP1 activity acts as a positive regulator of renal tubular pyroptosis mainly through the mediation of phospho-p38 MAPK.
Collapse
Affiliation(s)
- Yinhong Wang
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenkai Cui
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weihao Zhao
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Pengfei Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Linting Wei
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zikun Zhu
- Department of Computer Science, School of Computing & Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - Ming Liu
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rongguo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Lining Jia
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
25
|
Du J, Zhang X, Li B, Huo S, Zhang J, Fu Y, Song M, Shao B, Li Y. The hepatotoxicity of hexafluoropropylene oxide trimer acid caused by apoptosis via endoplasmic reticulum-mitochondrial crosstalk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171234. [PMID: 38428612 DOI: 10.1016/j.scitotenv.2024.171234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
As a ubiquitous pollutant in the environment, hexafluoropropylene oxide trimer acid (HFPO-TA) has been proven to have strong hepatotoxicity. However, the underlying mechanism is still unclear. Consequently, in vivo and in vitro models of HFPO-TA exposure were established to investigate the detrimental effects of HFPO-TA on the liver. In vivo, we discovered that HFPO-TA enhanced endoplasmic reticulum (ER)-mitochondrial association, caused mitochondrial oxidative damage, activated ER stress, and induced apoptosis in mouse livers. In vitro experiments confirmed that IP3R overexpression on ER structure increased mitochondrial calcium levels, which led to mitochondrial damage and mitochondria-dependent apoptosis in HepG2 cells exposed to HFPO-TA. Subsequently, damaged mitochondria released a large amount of mitochondrial ROS, which activated ER stress and ER stress-dependent apoptosis. In conclusion, this study demonstrates that HFPO-TA can induce apoptosis by regulating the crosstalk between ER and mitochondria, ultimately leading to liver damage. These findings reveal the significant hepatotoxicity of HFPO-TA and its potential mechanisms.
Collapse
Affiliation(s)
- Jiayu Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yang Fu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Department of Veterinary Medicine, Heze Vocational College, Heze 274031, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Chen M, Wu GB, Hua S, Zheng L, Fan Q, Luo M. Dibutyl phthalate (DBP) promotes Epithelial-Mesenchymal Transition (EMT) to aggravate liver fibrosis into cirrhosis and portal hypertension (PHT) via ROS/TGF-β1/Snail-1 signalling pathway in adult rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116124. [PMID: 38503108 DOI: 10.1016/j.ecoenv.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE The primary objective of this study was to investigate the toxicological impact of Dibutyl phthalate (DBP) on the process of liver fibrosis transitioning into cirrhosis and the subsequent development of portal hypertension (PHT) through the mechanism of epithelial-mesenchymal transition (EMT) mediated by the ROS/TGF-β/Snail-1 signaling pathway. METHOD Carbon tetrachloride (CCl4) (1 mg/kg) was introduced in adult rats by oral feeding in CCl4 and CCl4+DBP groups twice a week for 8 weeks, and twice for another 8 week in CCl4 group. DBP was introduced by oral feeding in the CCl4+DBP group twice over the following 8 weeks. We subsequently analyzed hemodynamics measurements and liver cirrhosis degree, hepatic inflammation and liver function in the different groups. EMT related genes expression in rats in the groups of Control, DBP, CCl4 and CCl4+DBP were measured by immunohistochemistry (IHC). Enzyme-linked immunosorbent Assay (ELISA), qRT-PCR, western blot were used to detect the EMT related proteins and mRNA gene expression levels in rats and primary hepatocytes (PHCs). Reactive oxygen species (ROS) were examined with a ROS detection kit. RESULTS The results showed that the CCl4+DBP group had higher portal pressure (PP) and lower mean arterial pressure (MAP) than the other groups. Elevated collagen deposition, profibrotic factor, inflammation, EMT levels were detected in DBP and CCl4+DBP groups. ROS, TGF-β1 and Snail-1 were highly expressed after DBP exposure in vitro. TGF-β1 had the potential to regulate Snail-1, and both of them were subject to regulation by ROS. CONCLUSION DBP could influence the progression of EMT through its toxicological effect by ROS/TGF-β1/Snail-1 signalling pathway, causing cirrhosis and PHT in final. The findings of this research might contribute to a novel comprehension of the underlying toxicological mechanisms and animal model involved in the progression of cirrhosis and PHT, and potentially offered a promising therapeutic target for the treatment of the disease.
Collapse
Affiliation(s)
- Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Hua
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fan
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Pang X, Gao S, Liu T, Xu FX, Fan C, Zhang JF, Jiang H. Identification of STAT3 as a biomarker for cellular senescence in liver fibrosis: A bioinformatics and experimental validation study. Genomics 2024; 116:110800. [PMID: 38286349 DOI: 10.1016/j.ygeno.2024.110800] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Cellular senescence is associated with a dysregulated inflammatory response, which is an important driver of the development of liver fibrosis (LF). This study aimed to investigate the effect of cellular senescence on LF and identify potential key biomarkers through bioinformatics analysis combined with validation experiments in vivo and in vitro. METHODS The Gene Expression Omnibus (GEO) database and GeneCards database were used to download the LF dataset and the aging-related gene set, respectively. Functional enrichment analysis of differential genes was then performed using GO and KEGG. Hub genes were further screened using Cytoscape's cytoHubba. Diagnostic values for hub genes were evaluated with a receiver operating characteristic (ROC) curve. Next, CIBERSORTx was used to estimate immune cell types and ratios. Finally, in vivo and in vitro experiments validated the results of the bioinformatics analysis. Moreover, molecular docking was used to simulate drug-gene interactions. RESULTS A total of 44 aging-related differentially expressed genes (AgDEGs) were identified, and enrichment analysis showed that these genes were mainly enriched in inflammatory and immune responses. PPI network analysis identified 6 hub AgDEGs (STAT3, TNF, MMP9, CD44, TGFB1, and TIMP1), and ROC analysis showed that they all have good diagnostic value. Immune infiltration suggested that hub AgDEGs were significantly associated with M1 macrophages or other immune cells. Notably, STAT3 was positively correlated with α-SMA, COL1A1, IL-6 and IL-1β, and was mainly expressed in hepatocytes (HCs). Validation experiments showed that STAT3 expression was upregulated and cellular senescence was increased in LF mice. A co-culture system of HCs and hepatic stellate cells (HSCs) further revealed that inhibiting STAT3 reduced HCs senescence and suppressed HSCs activation. In addition, molecular docking revealed that STAT3 was a potential drug therapy target. CONCLUSIONS STAT3 may be involved in HCs senescence and promote HSCs activation, which in turn leads to the development of LF. Our findings suggest that STAT3 could be a potential biomarker for LF.
Collapse
Affiliation(s)
- Xue Pang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Shang Gao
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Tao Liu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Feng Xia Xu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China
| | - Chang Fan
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Jia Fu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Hui Jiang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, Anhui, China.
| |
Collapse
|
28
|
Liu Z, Sun M, Liu W, Feng F, Li X, Jin C, Zhang Y, Wang J. Deficiency of purinergic P2X4 receptor alleviates experimental autoimmune hepatitis in mice. Biochem Pharmacol 2024; 221:116033. [PMID: 38301964 DOI: 10.1016/j.bcp.2024.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Purinergic P2X4 receptor (P2X4R) has been shown to have immunomodulatory properties in infection, inflammation, and organ damage including liver regeneration and fibrosis. However, the mechanisms and pathophysiology associated with P2X4R during acute liver injury remain unknown. We used P2X4R-/- mice to explore the role of P2X4R in three different models of acute liver injury caused by concanavalin A (ConA), carbon tetrachloride, and acetaminophen. ConA treatment results in an increased expression of P2X4R in the liver of mice, which was positively correlated with higher levels of aspartate aminotransferase and alanine aminotransferase in the serum. However, P2X4R gene ablation significantly reduced the severity of acute hepatitis in mice caused by ConA, but not by carbon tetrachloride or acetaminophen. The protective benefits against immune-mediated acute hepatitis were achieved via modulating inflammation (Interleukin (IL)-1β, IL-6, IL-17A, interferon-γ, tumor necrosis factor-α), oxidative stress (malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase), apoptosis markers (Bax, Bcl-2, and Caspase-3), autophagy biomarkers (LC3, Beclin-1, and p62), and nucleotide oligomerization domain-likereceptorprotein 3(NLRP3) inflammasome-activated pyroptosis markers (NLRP3, Gasdermin D, Caspase-1, ASC, IL-1β). Additionally, administration of P2X4R antagonist (5-BDBD) or agonist (cytidine 5'-triphosphate) either improved or worsened ConA-induced autoimmune hepatitis, respectively. This study is the first to reveal that the absence of the P2X4 receptor may mitigate immune-mediated liver damage, potentially by restraining inflammation, oxidation, and programmed cell death mechanisms. And highlight P2X4 receptor is essential for ConA-induced acute hepatitis.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mengyang Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Fangyu Feng
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Xinyu Li
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China.
| |
Collapse
|
29
|
Zhang X, Li B, Huo S, Du J, Zhang J, Song M, Shao B, Li Y. Hexafluoropropylene oxide trimer acid exposure triggers necroptosis and inflammation through the Wnt/β-catenin/NF-κB axis in the liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167033. [PMID: 37709082 DOI: 10.1016/j.scitotenv.2023.167033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Hexafluoropropylene oxide trimer acid (HFPO-TA), an emerging alternative to perfluorooctanoic acid (PFOA), has recently been identified as a significant environmental pollutant. Nevertheless, there is a scarcity of studies regarding the hepatotoxic effects of HFPO-TA. Here, we investigated the types and potential mechanisms of liver damage caused by HFPO-TA. Initially, we validated that the introduction of HFPO-TA resulted in the Wnt/β-catenin signaling (W/β signaling) activation, as well as the induction of necroptosis and inflammation, both in the liver of mice and in HepG2 cells. Subsequently, we established that the W/β signaling mediated the necroptosis and inflammation observed in the liver and HepG2 cells exposed to HFPO-TA. Finally, we demonstrated that the phosphorylated form of NF-κB p65 (p-NF-κB p65) played a role in mediating the necroptosis and inflammation, and its activity could be regulated by the W/β signaling pathway in the liver of mice and HepG2 cells exposed to HFPO-TA. In conclusion, our investigation elucidates the role of HFPO-TA in inducing necroptosis and inflammation in the liver, which is facilitated through the activation of the W/β/NF-κB axis.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
30
|
Han YH, Liu XD, Jin MH, Sun HN, Kwon T. Role of NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Inflamm Res 2023; 72:1839-1859. [PMID: 37725102 DOI: 10.1007/s00011-023-01790-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases are a common group of neurological disorders characterized by progressive loss of neuronal structure and function leading to cognitive impairment. Recent studies have shown that neuronal pyroptosis mediated by the NLRP3 inflammasome plays a crucial role in the pathogenesis of neurodegenerative diseases. OBJECTIVE AND METHOD The NLRP3 inflammasome is a multiprotein complex that, when activated within cells, triggers an inflammatory response, ultimately leading to pyroptotic cell death of neurons. Pyroptosis is a typical pro-inflammatory programmed cell death process occurring downstream of NLRP3 inflammasome activation, characterized by the formation of pores on the cell membrane by the GSDMD protein, leading to cell lysis and the release of inflammatory factors. It has been found that NLRP3 inflammasome-mediated neuronal pyroptosis is closely associated with the development of various neurodegenerative diseases, such as Alzheimer's disease, traumatic brain injury, and Parkinson's disease. Therefore, inhibiting NLRP3 inflammasome activation and attenuating neuronal pyroptosis could potentially serve as novel strategies for the treatment of neurodegenerative diseases. RESULTS The aim of this review is to explore the role of NLRP3 activation-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Firstly, we extensively discuss the relationship between NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in various neurodegenerative diseases. Subsequently, we further explore the mechanisms driving NLRP3 activation and assembly, as well as the post-translational modifications regulating NLRP3 inflammasome activation. CONCLUSION Understanding these mechanisms will contribute to a deeper understanding of the link between neuronal pyroptosis and neurodegenerative diseases, and hold significant implications for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xiao-Dong Liu
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|