1
|
Du Z, Bai H, Liu M, Liu Y, Zhu G, Chai G, He Y, Shi J, Duan Y. Response of ecological stoichiometry and homeostasis characteristic to nitrogen addition in Hippophae rhamnoides L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175591. [PMID: 39173774 DOI: 10.1016/j.scitotenv.2024.175591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Nitrogen (N) in the atmosphere frequently affects plant growth, ecological stoichiometric equilibrium, and homeostasis stability. However, the effect of N addition application on the growth of Hippophae rhamnoides seedlings remains ambiguous. We investigated the effects of N addition on the ecological stoichiometry and homeostatic characteristics of H. rhamnoides seedlings. Greenhouse cultivation experiments were conducted at five N application levels: 0 kg ha-1 yr-1(CK), 100 kg ha-1 yr-1 (N10), 200 kg ha-1 yr-1 (N20), 400 kg ha-1 yr-1 (N40), 800 kg ha-1 yr-1 (N80). The results showed that pH and available phosphorus (AP) significantly decreased with increasing N, whereas soil C:P and N:P ratios significantly increased under the N40 and N80 treatments. The leaf C:N ratio significantly decreased with increasing N, whereas the N:P ratio increased. With N addition, the C:N ratio of plant stems and roots significantly decreased, whereas the C:P and N:P ratios significantly increased. N addition was significantly correlated with the ecological stoichiometry of plant leaves and soil properties (0.38 and 0.84, respectively). Homeostasis of the organs of H. rhamnoides seedlings exhibited an absolute steady state. The C, N, and C:P ratios of the roots exhibited insensitive states under the N40 treatment. N addition significantly modified both the soil ecological stoichiometry and the stoichiometry of H. rhamnoides seedlings. However, it did not demonstrate a pronounced negative effect on the homeostasis of H. rhamnoides seedlings. This study offers new insights into the ecological adaptation process of H. rhamnoides, particularly concerning its nutrient distribution, utilization strategies, and stability.
Collapse
Affiliation(s)
- Zhongyu Du
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Huihui Bai
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Mili Liu
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Yang Liu
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Guodong Zhu
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Guaiqiang Chai
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Yiming He
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Jianguo Shi
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China
| | - Yizhong Duan
- College of Life Science, Shaanxi Key Laboratory of Ecological Restoration in Northern Shaanxi Mining Area, Yulin University, Yulin 719000, China.
| |
Collapse
|
2
|
Wang Y, Fang J, Li X, Li C, Zhao Y, Liu J. Microorganisms Directly Affected Sediment Carbon–Nitrogen Coupling in Two Constructed Wetlands. WATER 2024; 16:1550. [DOI: 10.3390/w16111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Clarifying the carbon–nitrogen coupling pattern in wetlands is crucial for understanding the driving mechanism of wetland carbon sequestration. However, the impacts of plants and environmental factors on the coupling of carbon–nitrogen in wetland sediments are still unclear. Sediment samples from plant (Typha angustifolia and Phragmites australis)-covered habitats and bare land were collected in two constructed wetlands in northern China. The contents of different forms of carbon and nitrogen in sediments and plants, and the sediment microbial community were detected. It was found that the sediment carbon to nitrogen (C/N) ratios did not differ significantly in the bare sites of different wetlands, but did in the plant-covered sites, which highlighted the different role of plants in shifting the carbon–nitrogen coupling in different constructed wetlands. The effects of plants on the sediment carbon–nitrogen coupling differed in two constructed wetlands, so the structural equation model was used and found that sediment microorganisms directly affected sediment C/N ratios, while water and sediment physicochemical properties indirectly affected sediment C/N ratios by altering sediment microbial functions. Multiple linear regression models showed that water pH, sediment moisture content, water dissolved oxygen, and water depth had a greater influence on the carbon metabolism potential of the sediment microbial community, while sediment moisture content had the greatest impact on the sediment microbial nitrogen metabolism potential. The study indicates that variations in environmental conditions could alter the influence of plants on the carbon and nitrogen cycles of wetland sediments. Water environmental factors mainly affect microbial carbon metabolism functions, while soil physicochemical factors, especially water content, affect microbial carbon and nitrogen metabolism functions.
Collapse
Affiliation(s)
- Yan Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jiaohui Fang
- School of Life Sciences, Qufu Normal University, Qufu 273100, China
| | - Xin Li
- Jinan Environmental Research Academy, Jinan 250000, China
| | - Changchao Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yongkang Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Wang S, Du Y, Liu S, Pan J, Wu F, Wang Y, Wang Y, Li H, Dong Y, Wang Z, Liu Z, Wang G, Xu Z. Response of C:N:P stoichiometry to long-term drainage of peatlands: Evidence from plant, soil, and enzyme. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170688. [PMID: 38320702 DOI: 10.1016/j.scitotenv.2024.170688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Drought induced by climate warming and human activities regulates carbon (C) cycling of peatlands by changing plant community composition and soil properties. Estimating the responses of peatlands C cycling to environmental changes requires further study of C: nitrogen (N): phosphorus (P) stoichiometric ratios of soil, plants, and enzyme activities. However, systematic studies on the stoichiometry of above-ground and below-ground ecosystems of peatlands post drainage remain scarce. This study compared stoichimetric ratios of plant and soil and stoichimetric ratios of enzyme activities with different functions in two different parts of a minerotrophic peatland, a natural undisturbed part and a part that had been drained for almost 50 years, in Northern China. For the shrub plants, the average C:N:P ratios of leaf in natural and drained peatland were 448:17:1 and 393:15:1, respectively. This indicated that the growth rate of shrub plants is higher in the drained peatland than in the natural peatland, which makes P element more concentrated in the photosynthetic site. However, from the perspective of the dominant plant, the mean C:N:P ratio of Carex leaf was 650:25:1 in the natural peatland, but was 1028:50:1 for Dasiphora fruticosa in drained peatland. This indicated that the intensification of P-limitation of plant growth after drainage. Soil C:N:P ratios of above water table depth (AWT) were 238:15:1 and 277:12:1, but were 383:17:1 and 404:19:1 for below water table depth (BWT) in the natural and the drained peatland, respectively. Soil C:P ratios were greater than the threshold elemental ratio of C:P (174:1), but the soil C:N ratios were less than the threshold elemental ratio of C:N (23:1), which suggested that P was the most limiting nutrient of soil. The soil microbial activities were co-limited by C&P in Baijianghe peatlands. However, the microbial metabolic P limitation was intensified, but the C limitation was weakened for the above water table depth soil after long-term drainage. There are connection between plant-microbe P limitation in peatlands. The P limitation of microbial metabolism was significant positively correlated with soil C:N but negatively with soil moisture. The increase in the lignocelluloses index suggested considerable decomposition of soil organic matter after peatland drainage. These results of stoichiometric ratios from above- to below ground could provide scientific base for the C cycling of peatland undergone climate change.
Collapse
Affiliation(s)
- Shengzhong Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Yaoyao Du
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Shasha Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Junxiao Pan
- Earth Critical Zone and Flux Research Station of Xing'an Mountains (Xing'an CZO), Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Fan Wu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Yingzhuo Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Yuting Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Hongkai Li
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Yanmin Dong
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Zucheng Wang
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China
| | - Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Guodong Wang
- Northeast Institute of Geography and Agroecology, Chiese Academy of Sciences, Changhchun 130102, China
| | - Zhiwei Xu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|