1
|
Wu F, Li W, Liu X, Li W, Guo X, Zhao Y, Zhang H, Song Q, Liu F, Zhang P, Wu M, Xu J. Se improves Cd tolerance by modulating phytohormone signaling and primary metabolism in strawberry. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138533. [PMID: 40373415 DOI: 10.1016/j.jhazmat.2025.138533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/02/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Cadmium (Cd) pollution leads to reduced crop yields and poses a threat to human health, making it an important environmental and agricultural safety issue. Selenium [Se(IV)] has been shown to alleviate Cd stress in plants; however, the mechanisms underlying Se-mediated protection against Cd toxicity remain largely unclear. In this study, we investigated the physiological and molecular mechanisms of Se(IV)-alleviated Cd toxicity in strawberry plants through physio-biochemical and transcriptomic analyses. Our results showed that foliar spraying with Se(IV) increased photosynthetic efficiency, reduced Cd-induced oxidative damage by enhancing antioxidant enzyme activities and soluble sugar contents, thereby improving Cd stress tolerance. Transcriptomic profiling revealed 477 common differentially accumulated transcripts (DATs), predominantly enriched in transporter activity, oxidoreductase function, and antioxidant-related processes. Notably, seven key genes involved in Cd efflux, chelation, secondary metabolite transport and nutrient uptake (FvPCR9-like, FvCBP-like, FvWAT1-like, FvMOT1, FvYW_6g02140, FvNRT2.1 and FvZIP8) exhibited opposite expression patterns under Se(IV) and Cd treatments. Supplementation with Se(IV) also modulated phytohormone signaling, nitrogen metabolism and carbon metabolism pathways, providing a multi-dimensional approach to mitigating Cd-induced physiological disruptions. This study provides novel insights into Se(IV)-mediated Cd stress adaptation, and offers promising strategies for developing low-Cd-accumulating crops, addressing critical environmental and agricultural challenges associated with heavy metal contamination.
Collapse
Affiliation(s)
- Fei Wu
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Wen Li
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoxiao Liu
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Weimin Li
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoyu Guo
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Yuan Zhao
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Haojing Zhang
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Qianqian Song
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Fei Liu
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Zhang
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Min Wu
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| | - Jin Xu
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
2
|
Li Y, Li X, Peng D, Luo J, Zhu S, Du H, Li X, Zhang J, Meng J, Pei X, Zhao X. Comprehensive physiological, transcriptomic, and metabolomic analyses revealed the regulation mechanism of evergreen and cold resistance of Pinus koraiensis needles. BMC PLANT BIOLOGY 2024; 24:1182. [PMID: 39695949 DOI: 10.1186/s12870-024-05924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
As a significant fruit and timber tree species among conifers, Pinus koraiensis remains it evergreen status throughout the harsh winters of the north, a testament to its intricate and prolonged evolutionary adaptation. This study delves into the annual trends of physiological indicators, gene expression levels, and metabolite accumulation to dissect the seasonal adaptability of P. koraiensis needles. Chlorophyll content reaches its zenith primarily between July and September, whereas carotenoids persist until spring. Additionally, notable seasonal variations are observed in the levels of soluble sugar and protein. Transcriptome data is categorized into four distinct stages: spring (S2), summer (S3-S4), autumn (S5), and winter (S6-S1). The differential expression of transcription factor genes, including bHLH, MYB-related, AP2/ERF, C3H, and NAC, provides insights into the needles' seasonal adaptations. Analysis of chlorophyll and carotenoid metabolism, sugar metabolism, and the MAPK signaling pathway identifies PSY5 (Cluster-50735.3), AMY13 (Cluster-37114.0), pgm1 (Cluster-46022.0), and MEKK1-1 (Cluster-33069.0) may as potential key genes involved in sustaining the needle's evergreen nature and cold resistance. Ultimately, a comprehensive annual adaptability map for P. koraiensis is proposed, enhancing understanding of its responses to seasonal variations.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China
| | - Dan Peng
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China
| | - Jiaxin Luo
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China
| | - Shuai Zhu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China
| | - Haibo Du
- Baicheng Forestry Science Research Institute, Baicheng, 137099, China
| | - Xiaoning Li
- Baicheng Forestry Science Research Institute, Baicheng, 137099, China
| | - Jiafeng Zhang
- Yongji County Forest Seed Station, Jilin, 132100, China
| | - Jun Meng
- Jilin Forest Seedling Management Station, Changchun, 130118, China
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun, 130118, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Liu Q, Sheng Y, Liu X, Wang Z. Reclamation of co-pyrolyzed dredging sediment as soil cadmium and arsenic immobilization material: Immobilization efficiency, application safety, and underlying mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122753. [PMID: 39368382 DOI: 10.1016/j.jenvman.2024.122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
The safe management of toxic metal-polluted dredging sediment (DS) is imperative owing to its potential secondary hazards. Herein, the co-pyrolysis product (DS@BC) of polluted DS was creatively applied to immobilize soil Cd and As to achieve DS resource utilization, and the efficiency, safety, and mechanism were investigated. The results revealed that the DS@BC was more effective at reducing soil Cd bioavailability than the DS was (58.9-73.2% vs. 21.8-27.4%), except for the dilution effect, whereas the opposite phenomenon occurred for soil As (25.5-35.7% vs. 35.7-42.8%). The DS@BC immobilization efficiency was dose-dependent for both Cd and As. Soil labile Cd and As were transformed to more stable fractions after DS@BC immobilization. DS@BC immobilization inhibited the transfer of soil Cd and As to Brassica chinensis L. and did not cause excessive accumulation of other toxic metals in the plants. The appropriate addition of the DS@BC (8%) sufficiently alleviated the oxidative stress response of the plants and enhanced their growth. These findings indicate that the DS@BC was safe and effective for soil Cd and As immobilization. DS@BC immobilization decreased the diversity and richness of the rhizosphere soil bacterial community because of the dilution effect. The DS@BC immobilized soil Cd and As via direct adsorption, and indirect increasing soil pH, and regulating the abundance of specific beneficial bacteria (e.g., Bacillus). Therefore, the use of co-pyrolyzed DS as a soil Cd and As immobilization material is a promising resource utilization method for DS. Notably, to verify the long-term effects and safety of DS@BC immobilization, field trials should be conducted to explore the effectiveness and risk of harmful metal release from DS@BC immobilization under real-world conditions.
Collapse
Affiliation(s)
- Qunqun Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China.
| | - Yanqing Sheng
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan, 250101, China
| | - Xiaozhu Liu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Yi K, Ren Y, Zhang H, Lin B, Hao P, Hua S. Can Rice Growth Substrate Substitute Rapeseed Growth Substrate in Rapeseed Blanket Seedling Technology? Lesson from Reactive Oxygen Species Production and Scavenging Analysis. Antioxidants (Basel) 2024; 13:1022. [PMID: 39199266 PMCID: PMC11351573 DOI: 10.3390/antiox13081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Rapeseed (Brassica napus L.) seedlings suffering from inappropriate growth substrate stress will present poor seedling quality. However, the regulatory mechanism for the production and scavenging of reactive oxygen species (ROS) caused by this type of stress remains unclear. In the current study, a split plot experiment design was implemented with two crop growth substrates-a rice growth substrate (RIS) and rapeseed growth substrate (RAS)-as the main plot and two genotypes-a hybrid and an open-pollinated variety (Zheyouza 1510 and Zheyou 51, respectively)-as the sub-plot. The seedling quality was assessed, and the ROS production/scavenging capacity was evaluated. Enzymatic and non-enzymatic systems, including ascorbic acid and glutathione metabolism, and RNA-seq data were analyzed under the two growth substrate treatments. The results revealed that rapeseed seedling quality decreased under RIS, with the plant height, maximum leaf length and width, and aboveground dry matter being reduced by 187.7%, 64.6%, 73.2%, and 63.8% on average, respectively, as compared to RAS. The main type of ROS accumulated in rapeseed plants was hydrogen peroxide, which was 47.8% and 14.1% higher under RIS than under RAS in the two genotypes, respectively. The scavenging of hydrogen peroxide in Zheyouza 1510 was the result of a combination of enzymatic systems, with significantly higher peroxidase (POD) and catalase (CAT) activity as well as glutathione metabolism, with significantly higher reduced glutathione (GSH) content, under RAS, while higher oxidized glutathione (GSSH) was observed under RIS. However, the scavenging of hydrogen peroxide in Zheyou 51 was the result of a combination of elevated oxidized ascorbic acid (DHA) under RIS and higher GSH content under RAS. The identified gene expression levels were in accordance with the observed enzyme expression levels. The results suggest that the cost of substituting RAS with RIS is a reduction in rapeseed seedling quality contributing to excessive ROS production and a reduction in ROS scavenging capacity.
Collapse
Affiliation(s)
- Kaige Yi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| | - Yun Ren
- Institute of Crop, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China;
| | - Hui Zhang
- Zhejiang Agri-Tech Extension and Service Center, Hangzhou 310020, China;
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| | - Pengfei Hao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (K.Y.); (B.L.); (P.H.)
| |
Collapse
|
5
|
Yadav P, Ansari MW, Gill R, Tuteja N, Gill SS. Arsenic transport, detoxification, and recent technologies for mitigation: A systemic review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108848. [PMID: 38908350 DOI: 10.1016/j.plaphy.2024.108848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
Arsenic (As) is an acute toxic metalloid that affects plant growth and development. As is found in the environment in organic and inorganic forms, but arsenite As(III) and arsenate As(V) are the most prevalent forms that negatively impact the plants. Roots exposed to As can easily absorb it mainly through transporters that carry vital mineral nutrients. As reach the food chain via crops irrigated with As-polluted water and exerts a negative impact. Even at low levels, As exposure disrupts the regular functioning of plants by generating a high level of reactive oxygen species (ROS) results into oxidative damage, and disruption of redox system. Plants have built-in defence mechanisms to combat this oxidative damage. The development of a food crop with lower As levels is dependent upon understanding the molecular process of As detoxification in plants, which will help reduce the consumption of As-contaminated food. Numerous genes in plants that may provide tolerance under hazardous conditions have been examined using genetic engineering techniques. The suppression of genes by RNA interference (RNAi) and CRISPR-Cas 9 (CRISPR associated protein 9) technology revealed an intriguing approach for developing a crop that has minimal As levels in consumable portions. This study aims to present current information on the biochemical and molecular networks associated with As uptake, as well as recent advances in the field of As mitigation using exogenous salicylic acid (SA), Serendipita indica and biotechnological tools in terms of generating As-tolerant plants with low As accumulation.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India.
| | - Ritu Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Narendra Tuteja
- International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sarvajeet Singh Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
6
|
Yang Z, Wang J, Wang W, Zhang H, Wu Y, Gao X, Gao D, Li X. Physiological, cytological and multi-omics analysis revealed the molecular response of Fritillaria cirrhosa to Cd toxicity in Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134611. [PMID: 38754230 DOI: 10.1016/j.jhazmat.2024.134611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Fritillaria cirrhosa, an endangered plant endemic to plateau regions, faces escalating cadmium (Cd) stress due to pollution in the Qinghai-Tibet Plateau. This study employed physiological, cytological, and multi-omics techniques to investigate the toxic effects of Cd stress and detoxification mechanisms of F. cirrhosa. The results demonstrated that Cd caused severe damage to cell membranes and organelles, leading to significant oxidative damage and reducing photosynthesis, alkaloid and nucleoside contents, and biomass. Cd application increased cell wall thickness by 167.89% in leaves and 445.78% in bulbs, leading to weight percentage of Cd increases of 76.00% and 257.14%, respectively. PER, CESA, PME, and SUS, genes responsible for cell wall thickening, were significantly upregulated. Additionally, the levels of metabolites participating in the scavenging of reactive oxygen species, including oxidized glutathione, D-proline, L-citrulline, and putrescine, were significantly increased under Cd stress. Combined multi-omics analyses revealed that glutathione metabolism and cell wall biosynthesis pathways jointly constituted the detoxification mechanism of F. cirrhosa in response to Cd stress. This study provides a theoretical basis for further screening of new cultivars for Cd tolerance and developing appropriate cultivation strategies to alleviate Cd toxicity.
Collapse
Affiliation(s)
- Zemin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Jialu Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenjun Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Haobo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yuhan Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Xusheng Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Dan Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Yu H, Li W, Liu X, Song Q, Li J, Xu J. Physiological and molecular bases of the nickel toxicity responses in tomato. STRESS BIOLOGY 2024; 4:25. [PMID: 38722370 PMCID: PMC11082119 DOI: 10.1007/s44154-024-00162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024]
Abstract
Nickel (Ni), a component of urease, is a micronutrient essential for plant growth and development, but excess Ni is toxic to plants. Tomato (Solanum lycopersicum L.) is one of the important vegetables worldwide. Excessive use of fertilizers and pesticides led to Ni contamination in agricultural soils, thus reducing yield and quality of tomatoes. However, the molecular regulatory mechanisms of Ni toxicity responses in tomato plants have largely not been elucidated. Here, we investigated the molecular mechanisms underlying the Ni toxicity response in tomato plants by physio-biochemical, transcriptomic and molecular regulatory network analyses. Ni toxicity repressed photosynthesis, induced the formation of brush-like lateral roots and interfered with micronutrient accumulation in tomato seedlings. Ni toxicity also induced reactive oxygen species accumulation and oxidative stress responses in plants. Furthermore, Ni toxicity reduced the phytohormone concentrations, including auxin, cytokinin and gibberellic acid, thereby retarding plant growth. Transcriptome analysis revealed that Ni toxicity altered the expression of genes involved in carbon/nitrogen metabolism pathways. Taken together, these results provide a theoretical basis for identifying key genes that could reduce excess Ni accumulation in tomato plants and are helpful for ensuring food safety and sustainable agricultural development.
Collapse
Affiliation(s)
- Hao Yu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Weimin Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Xiaoxiao Liu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Qianqian Song
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Junjun Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China.
- Shanxi Key Laboratory of Germplasm Resources Innovation and Utilization of Vegetable and Flower, Taiyuan, 030031, China.
| |
Collapse
|
8
|
Jiang Y, Chen X, Cao X, Wang C, Yue L, Li X, Wang Z. Mechanistic insight into the intensification of arsenic toxicity to rice (Oryza sativa L.) by nanoplastic: Phytohormone and glutathione metabolism modulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134086. [PMID: 38521034 DOI: 10.1016/j.jhazmat.2024.134086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In this study, nanoplastic (NPs) at environmentally relevant concentration (0.001% w/w) had no effect on the growth of rice, while significantly elevated the phytotoxicity of As (III) by 9.4-22.8% based on the endpoints of biomass and photosynthesis. Mechanistically, NPs at 0.001% w/w enhanced As accumulation in the rice shoots and roots by 70.9% and 24.5%, respectively. Reasons of this finding can was that (1) the co-exposure with As and NPs significantly decreased abscisic acid content by 16.0% in rice, with subsequent increasing the expression of aquaporin related genes by 2.1- to 2.7-folds as compared with As alone treatment; (2) the presence of NPs significantly inhibited iron plaque formation on rice root surface by 22.5%. We firstly demonstrated that "Trojan horse effect" had no contribution to the enhancement of As accumulation by NPs exposure. Additionally, NPs disrupted the salicylic acid, jasmonic acid, and glutathione metabolism, which subsequently enhancing the oxidation (7.0%) and translocation (37.0%) of in planta As, and reducing arsenic detoxification pathways (e.g., antioxidative system (28.6-37.1%), As vacuolar sequestration (36.1%), and As efflux (18.7%)). Our findings reveal that the combined toxicity of NPs and traditional contaminations should be considered for realistic evaluations of NPs.
Collapse
Affiliation(s)
- Yi Jiang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofei Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|