1
|
Wang C, Chen J, Xiong L, Tong S, Xu CY. Trigger thresholds and their dynamics of vegetation production loss under different atmospheric and soil drought conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175116. [PMID: 39084387 DOI: 10.1016/j.scitotenv.2024.175116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/23/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Many evidences have shown that both atmospheric and soil droughts can constrain vegetation growth and further threaten its ability to sequester carbon. However, the trigger thresholds of vegetation production loss under different atmospheric and soil drought conditions are still unknown. In this study, we proposed a Copula and Bayesian equations-based framework to investigate trigger thresholds of various vegetation production losses under different atmospheric and soil drought conditions. The trigger thresholds dynamics and their possible causes were also investigated. To achieve this goal, we first simulated the gross primary production, soil moisture, and vapor pressure deficit over China during 1961-2018 using an individual-based, spatially explicit dynamic global vegetation model. The main drivers of the dynamic change in trigger thresholds were then explored by Random Forest model. We found that soil drought caused greater stress on gross primary production loss than atmospheric drought, with a larger impact area and higher probability of damage. In terms of spatial distribution, the risk probability of gross primary production loss was higher in eastern China than in western China, and the drought trigger threshold was also smaller in eastern China. In addition, the trigger thresholds for atmospheric and soil drought in most regions exhibited a decreasing trend from 1961 to 2018, while the CO2 fertilization enhanced the drought tolerance of vegetation. The reduction in CO2 fertilization effect slowed down the downward trend of trigger threshold for soil drought, while the increase in temperature exacerbated the downward trend of trigger threshold for atmospheric drought. This study highlighted the larger effect of soil drought on vegetation production loss than atmospheric drought and implied that climate change can modulate the trigger threshold of vegetation production losses under drought conditions. These findings provide scientific guidance for managing the increasing risk of drought on vegetation and optimizing watershed water allocation.
Collapse
Affiliation(s)
- Chengyun Wang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Jie Chen
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Lihua Xiong
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Shanlin Tong
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Chong-Yu Xu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, PR China; Department of Geosciences, University of Oslo, Oslo N-0316, Norway
| |
Collapse
|
2
|
Zhou S, Wu S, Gao J, Liu L, Li D, Yan R, Wang J. Increased stress from compound drought and heat events on vegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175113. [PMID: 39084366 DOI: 10.1016/j.scitotenv.2024.175113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Compound drought and heat events (CDHEs), which are frequently occurring compound extreme climate events, have garnered considerable attention because of their detrimental effects on ecosystems. However, the intricacies of the spatial and temporal distributions of different durations of compound events, along with the variability in vegetation responses remain unclear. Here, we delineated the CDHEs based on meteorological observation data and investigated the spatial and temporal characteristics of CDHEs from 1993 to 2020 using the Theil-Sen trend test and Mann-Kendall nonparametric test. Furthermore, we utilized sliding correlation analysis to evaluate the impacts of CDHEs on vegetation among different climatic regions and ecosystems. Our findings indicate significant increasing trends in both the frequency and persistence of CDHEs from 1993 to 2020. The average trend of CDHEs frequency across different duration periods amounted to 13.80 %/decade. The fractional contribution of CDHEs lasting more than three days exhibited a significant increase, with an average trend of 2.00 %/decade. We also observed that vegetation is most significantly affected by compound events lasting 5-9 days. During the study period, the geographical extent of vegetation significantly impacted by CDHEs expanded by 0.89 %, correlation strength increased by 0.02, and lag time decreased by 0.25 months. These insights highlight the growing impact of CDHEs on vegetation under climate change, improving our understanding of vegetation responses to these compound events.
Collapse
Affiliation(s)
- Shuang Zhou
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohong Wu
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangbo Gao
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lulu Liu
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Delong Li
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Yan
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhang Z, Xu Y, Liu C, Chen L, Zhang Y, He Z, Wang R, Xun C, Ma Y, Yuan X, Wang X, Chen Y, Yang X. Cataloging the Genetic Response: Unveiling Drought-Responsive Gene Expression in Oil Tea Camellia ( Camellia oleifera Abel.) through Transcriptomics. Life (Basel) 2024; 14:989. [PMID: 39202731 PMCID: PMC11355629 DOI: 10.3390/life14080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Drought stress is a critical environmental factor that significantly impacts plant growth and productivity. However, the transcriptome analysis of differentially expressed genes in response to drought stress in Camellia oleifera Abel. is still unclear. This study analyzed the transcriptome sequencing data of C. oleifera under drought treatments. A total of 20,674 differentially expressed genes (DEGs) were identified under drought stress, with the number of DEGs increasing with the duration of drought. Specifically, 11,793 and 18,046 DEGs were detected after 8 and 15 days of drought treatment, respectively, including numerous upregulated and downregulated genes. Gene Ontology (GO) enrichment analysis showed that the DEGs were primarily involved in various biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that carbon metabolism, glyoxylate and dicarboxylate metabolism, proteasome, glycine, serine, and threonine metabolism were the main affected pathways. Among the DEGs, 376 protein kinases, 42 proteases, 168 transcription factor (TF) genes, and 152 other potential functional genes were identified, which may play significant roles in the drought response of C. oleifera. The expression of relevant functional genes was further validated using quantitative real-time PCR (qRT-PCR). These findings contribute to the comprehension of drought tolerance mechanisms in C. oleifera and bolster the identification of drought-resistant genes for molecular breeding purposes.
Collapse
Affiliation(s)
- Zhen Zhang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Yanming Xu
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Caixia Liu
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Longsheng Chen
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Ying Zhang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Zhilong He
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Rui Wang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Chengfeng Xun
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Yushen Ma
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Xiaokang Yuan
- Hunan Key Laboratory of Meteorological Disaster Prevention and Reduction, Hunan Research Institute of Meteorological Sciences, Changsha 410000, China;
| | - Xiangnan Wang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Yongzhong Chen
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| | - Xiaohu Yang
- Hunan Academy of Forestry, Changsha 410000, China; (Z.Z.); (Y.X.); (C.L.); (L.C.); (Y.Z.); (Z.H.); (R.W.); (C.X.); (Y.M.); (X.W.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410000, China
| |
Collapse
|
4
|
An S, Chen X, Li F, Wang X, Shen M, Luo X, Ren S, Zhao H, Li Y, Xu L. Long-term species-level observations indicate the critical role of soil moisture in regulating China's grassland productivity relative to phenological and climatic factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172553. [PMID: 38663615 DOI: 10.1016/j.scitotenv.2024.172553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
As a sensitive indicator of climate change and a key variable in ecosystem surface-atmosphere interaction, vegetation phenology, and the growing season length, as well as climatic factors (i.e., temperature, precipitation, and sunshine duration) are widely recognized as key factors influencing vegetation productivity. Recent studies have highlighted the importance of soil moisture in regulating grassland productivity. However, the relative importance of phenology, climatic factors, and soil moisture to plant species-level productivity across China's grasslands remains poorly understood. Here, we use nearly four decades (1981 to 2018) of in situ species-level observations from 17 stations distributed across grasslands in China to examine the key mechanisms that control grassland productivity. The results reveal that soil moisture is the strongest determinant of the interannual variability in grassland productivity. In contrast, the spring/autumn phenology, the length of vegetation growing season, and climate factors have relatively minor impacts. Generally, annual aboveground biomass increases by 3.9 to 25.3 g∙m2 (dry weight) with a 1 % increase in growing season mean soil moisture across the stations. Specifically, the sensitivity of productivity to moisture in wetter and colder environments (e.g., alpine meadows) is significantly higher than that in drier and warmer environments (e.g., temperate desert steppes). In contrast, the sensitivity to the precipitation of the latter is greater than the former. The effect of soil moisture is the most pronounced during summer. Dominant herb productivity is more sensitive to soil moisture than the others. Moreover, multivariate regression analyses show that the primary climatic factors and their attributions to variations in soil moisture differ among the stations, indicating the interaction between climate and soil moisture is very complex. Our study highlights the interspecific difference in the soil moisture dependence of grassland productivity and provides guidance to climate change impact assessments in grassland ecosystems.
Collapse
Affiliation(s)
- Shuai An
- College of Applied Arts and Science, Beijing Union University, Beijing 100191, China.
| | - Xiaoqiu Chen
- Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fangjun Li
- Geospatial Sciences Center of Excellence (GSCE), Department of Geography and Geospatial Sciences, South Dakota State University, Brookings, SD 57007, United States of America
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Miaogen Shen
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xiangzhong Luo
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - Shilong Ren
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Hongfang Zhao
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yan Li
- State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, Beijing 100875, China
| | - Lin Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Zhang Y, Gou X, Wang T, Zhang F, Wang K, Yang H, Yang K. Response of tree growth to drought variability in arid areas: Local hydroclimate and large-scale precipitation. ENVIRONMENTAL RESEARCH 2024; 249:118417. [PMID: 38316385 DOI: 10.1016/j.envres.2024.118417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
The impact of drought on terrestrial ecosystems is increasing, and the spatiotemporal heterogeneity of drought changes exacerbates the difficulty of determining ecosystem responses, especially in arid regions far from oceans. Tree rings have been widely used to understand how forest ecosystems respond to drought. However, the link between local hydroclimate variations related to tree rings and large-scale climate changes is not clear in the Qilian Mountains. Here, we used the tree ring width index to analyze the trend of Picea crassifolia growth and its relationship with climate in the middle Qilian Mountains. The results showed that the radial growth trend of Picea crassifolia is synchronized in the middle Qilian Mountains by calculating the Gleichläufigkeit index (GLK). Our analyses indicated that tree radial growth is positively correlated with drought during the growing season. Tree growth responds stably to drought (scPDSI and SPEI) and precipitation but unstably to temperature during 1950-2019. We further traced the meteorological factors that cause regional drought changes associated with radial growth. An increased total precipitation and decreased evaporation contribute to drought alleviation, favoring an increased tree radial growth. The increased total precipitation is mainly due to increased large-scale precipitation, which is related to water vapor transport changes. This study attempts to explore the influence of large-scale meteorology on regional drought change and its related tree radial growth response, which helps us to better understand the changes in forest ecosystems under climate change.
Collapse
Affiliation(s)
- Yiran Zhang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou, China
| | - Xiaohua Gou
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou, China.
| | - Tao Wang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou, China
| | - Fen Zhang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou, China
| | - Kai Wang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou, China
| | - Haijiang Yang
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou, China
| | - Kaixuan Yang
- College of Geographic Sciences, Qinghai Normal University, Xining, 810016, China; Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Xining, 810016, China
| |
Collapse
|