1
|
Zhang F, Shi X, Zhao S, Hao R, Sun B, Song S, Li G. Hypoxia cycle in shallow lakes during winter (ice-covered to melting period): Stable and decay, hypoxia, and recovery phases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176625. [PMID: 39374700 DOI: 10.1016/j.scitotenv.2024.176625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
This study investigates hypoxic processes beneath lake ice and explores the interactions between water environmental factors and dissolved oxygen (DO) during winter, aiming to systematically assess the influence of winter climate changes on lake ecosystems through environmental variables (physical, chemical, and biological characteristics of water). A complete hypoxic cycle in a high-altitude shallow lake was recorded using high-frequency monitoring technology, and based on a predetermined hypoxic threshold (DO<2 mg/L), it was divided into three phases: stable and decay phase, hypoxic phase, and recovery phase. Significant trend changes of environmental variables under different levels of DO were analyzed for each phase using the Mann-Kendall non-parametric test. On the basis of evaluating the overall trend of the time series, a GAM multi-factor optimization model integrating interactive effects was constructed to explore the response mechanism of environmental variables to hypoxic processes. The optimized model showed excellent explanatory performance with R2 values of 0.833 for the stable and decay phase and 0.932 for the recovery phase, with AIC values of 1554.72 and 721.03, respectively. The trend test combined with model analysis indicates that: (1) the decay of DO under the ice is primarily affected by the increase in EC, BGA, and EC*Temp, (2) the phytoplankton biomass in shallow lakes during winter has a definite contribution to the occurrence of oxygen deficiency, and (3) the water body experiences rapid reoxygenation after the ice layer breaks, but the DO level is restricted by the increase in temperature. This study highlights the ecosystem characteristics of shallow ice-covered lakes in cold arid regions, advancing our understanding of the response relationship between hypoxic aquatic environments under ice and environmental factors.
Collapse
Affiliation(s)
- Fan Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Ulansuhai Lake, Inner Mongolia, Bayan Nur 014404, China.
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruonan Hao
- Inner Mongolia Water Resources Development Center, Hohhot 010011, China
| | - Biao Sun
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuang Song
- College of Water Conservancy, Shenyang Agricultural University, Shengyang 110866, China
| | - Guohua Li
- Institute of Pastoral Hydraulic Research, Ministry of Water Resource, Hohhot 010020, China
| |
Collapse
|
2
|
Yu H, Shi X, Sun B, Zhao S, Wang S, Yang Z, Han Y, Kang R, Chen L. Effects of water replenishment on lake water quality and trophic status: An 11-year study in cold and arid regions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116621. [PMID: 38901171 DOI: 10.1016/j.ecoenv.2024.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Water replenishment is an important measure for maintaining and improving the aquatic environmental quality of lakes. The problems of water quality deterioration and water shortage can be alleviated by introducing water of higher quality. However, the mechanism of water replenishment in the improvement of the water quality and trophic status of lakes remains unclear. This study investigated water replenishment in Wuliangsuhai Lake (WLSHL) from 2011 to 2021 by collecting seasonal water samples and conducting laboratory analyses. Water replenishment was found to be capable of significantly improving lake water quality and alleviating eutrophication. It is worth noting that single long-term water replenishment measures have limitations in improving the water quality and trophic status. The whole process was divided into three stages according to the water quality and trophic status, namely the buffer period, decline period, and stable period. During the buffer period, the water quality and trophic status showed only slight improvement because of the small amount of water replenishment and the low proportion of higher-quality water from the Yellow River. In the decline period, with increasing water replenishment, the proportion of higher-quality water from the Yellow River gradually increased, leading to the most significant and stable degree of improvement. In the stable period, increases in the amount of water replenishment had little effect on improving the water quality and trophic status, which is attributable to the balance between internal pollutants (lake water-sediment), and the balance between internal-external pollutants (lake water-irrigation return flow + Yellow River water). On the premise of stable water quality, with eutrophication control as the management goal, the optimal water replenishment would be approximately 10.58 ×108 m3. Further necessary measures for solving aquatic environmental problems include the combination of sediment dredging, optimization of the water replenishment route, and implementation of quality management in water replenishment.
Collapse
Affiliation(s)
- Haifeng Yu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur, Inner Mongolia 014404, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China.
| | - Biao Sun
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shihuan Wang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhaoxia Yang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yue Han
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruli Kang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lixin Chen
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Rocha MAM, Barros MUG, de Assis de Souza Filho F, Neto IEL. Diel and seasonal mixing patterns and water quality dynamics in a multipurpose tropical semiarid reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43309-43322. [PMID: 38898349 DOI: 10.1007/s11356-024-34044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Eutrophication has become a recurrent concern in reservoirs worldwide. This problem is intensified in tropical semiarid regions, where the reservoirs have high seasonal and annual variability of water level and volume. Therefore, an extensive understanding of the diel variation of water quality key-parameters can help improve management of such reservoirs. This study focuses on Castanhão reservoir with the largest multipurpose dam in the Brazilian semiarid. Its main water uses are irrigation, fish farming, and human supply. The reservoir faced a decline in water quality due to a prolonged drought period. While previous research has predominantly emphasized the seasonal dynamics of thermal and chemical stratification, our investigation provides diel assessments of multiple water quality parameters, including nutrient concentrations and phytoplankton abundance. Our primary objective is to compare seasonal and diel variations in stratification and nutrient distribution within the reservoir. Key findings reveal a diel cycle of thermal stratification, primarily during dry season, driven by higher wind speeds. This is corroborated by a significant negative correlation between wind speed and the relative water column stability index. In contrast, during the rainy season, the reservoir experiences continuous thermal stratification due to inflowing water being warmer than the reservoir's water temperature. Notably, a significant negative correlation between total phosphorus and chlorophyll-a, along with a two-fold increase of this nutrient throughout the day during the rainy season, underscores the influence of the phytoplankton community dynamics on the diel nutrient variation. Chemical stratification of dissolved oxygen occurred during dry and rainy seasons, indicating that even during the dry season, where there is no significant inflow, the internal nutrient loading can also significantly impact the water quality of a reservoir. This study advances the understanding of diel water quality dynamics in tropical semiarid reservoirs, shedding light on both climatic and anthropogenic influences on water resources.
Collapse
Affiliation(s)
- Maria Aparecida Melo Rocha
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, bl. 713, 60.451-970, Fortaleza, Brazil
| | | | | | - Iran Eduardo Lima Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, bl. 713, 60.451-970, Fortaleza, Brazil.
| |
Collapse
|
4
|
Ren Z, Li Y, Yin J, Zhao Z, Hu N, Zhao M, Wang Y, Wang L, Wu L. Regulation of nitrite-dependent anaerobic methane oxidation bacteria by available phosphorus and microbial communities in lake sediments of cold and arid regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172065. [PMID: 38556008 DOI: 10.1016/j.scitotenv.2024.172065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
As global anthropogenic nitrogen inputs continue to rise, nitrite-dependent anaerobic methane oxidation (N-DAMO) plays an increasingly significant role in CH4 consumption in lake sediments. However, there is a dearth of knowledge regarding the effects of anthropogenic activities on N-DAMO bacteria in lakes in the cold and arid regions. Sediment samples were collected from five sampling areas in Lake Ulansuhai at varying depth ranges (0-20, 20-40, and 40-60 cm). The ecological characterization and niche differentiation of N-DAMO bacteria were investigated using bioinformatics and molecular biology techniques. Quantitative PCR confirmed the presence of N-DAMO bacteria in Lake Ulansuhai sediments, with 16S rRNA gene abundances ranging from 1.72 × 104 to 5.75 × 105 copies·g-1 dry sediment. The highest abundance was observed at the farmland drainage outlet with high available phosphorus (AP). Anthropogenic disturbances led to a significant increase in the abundance of N-DAMO bacteria, though their diversity remained unaffected. The heterogeneous community of N-DAMO bacteria was affected by interactions among various environmental characteristics, with AP and oxidation-reduction potential identified as the key drivers in this study. The Mantel test indicated that the N-DAMO bacterial abundance was more readily influenced by the presence of the denitrification genes (nirS and nirK). Network analysis revealed that the community structure of N-DAMO bacteria generated numerous links (especially positive links) with microbial taxa involved in carbon and nitrogen cycles, such as methanogens and nitrifying bacteria. In summary, N-DAMO bacteria exhibited sensitivity to both environmental and microbial factors under various human disturbances. This study provides valuable insights into the distribution patterns of N-DAMO bacteria and their roles in nitrogen and carbon cycling within lake ecosystems.
Collapse
Affiliation(s)
- Zixuan Ren
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yingnan Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jiahui Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ziwen Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Nan Hu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Manping Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yongman Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lixin Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Linhui Wu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Hohhot 010021, China.
| |
Collapse
|
5
|
Yan X, Xia Y, Ti C, Shan J, Wu Y, Yan X. Thirty years of experience in water pollution control in Taihu Lake: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169821. [PMID: 38190921 DOI: 10.1016/j.scitotenv.2023.169821] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
Taihu Lake has suffered from eutrophication and algal blooms for decades, primarily due to increasing anthropogenic pollutants from human activities. Extensive research and widespread implementation of water pollution control measures have significantly contributed to the improvement of water quality of Taihu Lake. However, the relevant experience of Taihu Lake pollution control has not been well summarized to provide insight for future lake restoration. This review article seeks to address this gap by first providing a comprehensive overview of Taihu Lake's water quality dynamics over the past thirty years, characterized by two distinct stages: (I) water quality deterioration (1990s-2007); and (II) water total nitrogen (TN) improvement but total phosphorus (TP) fluctuation (2007-current). Subsequently, we conducted a thorough review of the experiences and challenges associated with water pollution control during these two stages. Generally, pollution control practices emphasized point source control but overlooked non-point sources before 2007, possibly due to point sources being easier to identify and manage. Accordingly, the focus shifted from industrial point sources to a combination of industrial point and agricultural non-point sources after 2007 to control water pollution in the Taihu Lake Basin. Numerous studies have delved into non-point source pollution control, including source control, transport intercept, in-lake measures, and the integration of these technologies. Taken together, this paper provides suggestions based on the needs and opportunities of this region. Further research is needed to better understand and model the underlying pollution processes, as well as to increase public participation and improve policy and law implementation, which will assist decision-makers in formulating better water management in Taihu Lake.
Collapse
Affiliation(s)
- Xing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Chaopu Ti
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Ding J, Yang W, Liu X, Zhao Q, Dong W, Zhang C, Liu H, Zhao Y. Unraveling the rate-limiting step in microorganisms' mediation of denitrification and phosphorus absorption/transport processes in a highly regulated river-lake system. Front Microbiol 2023; 14:1258659. [PMID: 37901815 PMCID: PMC10613053 DOI: 10.3389/fmicb.2023.1258659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
River-lake ecosystems are indispensable hubs for water transfers and flow regulation engineering, which have frequent and complex artificial hydrological regulation processes, and the water quality is often unstable. Microorganisms usually affect these systems by driving the nutrient cycling process. Thus, understanding the key biochemical rate-limiting steps under highly regulated conditions was critical for the water quality stability of river-lake ecosystems. This study investigated how the key microorganisms and genes involving nitrogen and phosphorus cycling contributed to the stability of water by combining 16S rRNA and metagenomic sequencing using the Dongping river-lake system as the case study. The results showed that nitrogen and phosphorus concentrations were significantly lower in lake zones than in river inflow and outflow zones (p < 0.05). Pseudomonas, Acinetobacter, and Microbacterium were the key microorganisms associated with nitrate and phosphate removal. These microorganisms contributed to key genes that promote denitrification (nirB/narG/narH/nasA) and phosphorus absorption and transport (pstA/pstB/pstC/pstS). Partial least squares path modeling (PLS-PM) revealed that environmental factors (especially flow velocity and COD concentration) have a significant negative effect on the key microbial abundance (p < 0.001). Our study provides theoretical support for the effective management and protection of water transfer and the regulation function of the river-lake system.
Collapse
Affiliation(s)
- Jiewei Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xinyu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Qingqing Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Weiping Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Chuqi Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Haifei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|