1
|
Zhang T, Yan L, Qi J, Su R, Li X, Sun S, Song Y, Wei M, Zhang D. Antibiotic resistance genes in the coastal atmosphere under varied weather conditions: Distribution, influencing factors, and transmission mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125695. [PMID: 39824332 DOI: 10.1016/j.envpol.2025.125695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Antibiotic resistance genes (ARGs) have escalated to levels of concern worldwide as emerging environmental pollutants. Increasing evidence suggests that non-antibiotic antimicrobial substances expedite the spread of ARGs. However, the drivers and mechanisms involved in the generation and spread of ARGs in the atmosphere remain inadequately elucidated. Co-occurrence networks, mantel test analysis, and partial least squares path modeling were used to analyze the symbiotic relationships of ARGs with meteorological conditions, atmospheric pollutants, water-soluble inorganic ions, bacteria, mobile genetic elements (MGEs), antibacterial biocide and metal resistance genes, and to identify the direct drivers of ARGs. The types and abundance of ARGs exhibited different seasonal distribution. Specifically, the types exhibited a strong alignment with the diversity of air masses terrestrial sources, while the abundance displayed a significant positive correlation with both biocide resistance genes (BRGs) and metal resistance genes (MRGs). The contribution of bacterial communities and MGEs to the generation and spread of ARGs was constrained by the low levels of antibiotics in the atmosphere and the existence of "viral intermediates". Conversely, antibacterial biocides and metals influenced mutation rates, cellular SOS responses, and oxidative stress of bacteria, consequently facilitating the generation and spread of ARGs. Moreover, the co-selection among their derivatives, resistance genes, ensured a stable presence of ARGs. The research highlighted the significant impact of residual antimicrobial substances on both the generation and spread of ARGs. Elucidating the sources of aerosols and the co-selection mechanism linking with ARGs, BRGs, and MRGs were crucial for preserving the stability of ARGs in the atmosphere.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Lingchong Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Jianhua Qi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China
| | - Rongguo Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Shaohua Sun
- Laoshan District Meteorological Bureau, Qingdao, 266107, PR China
| | - Yongzhong Song
- Jufeng Peak Tourist Management Service Center of Laoshan Scenic Spot, Qingdao, 266100, PR China
| | - Mingming Wei
- Laoshan District Meteorological Bureau, Qingdao, 266107, PR China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China.
| |
Collapse
|
2
|
Solazzo G, Rovelli S, Iodice S, Chung M, Frimpong M, Bollati V, Ferrari L, Ghedin E. The microbiome of Total Suspended Particles and its influence on the respiratory microbiome of healthy office workers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117874. [PMID: 39923562 DOI: 10.1016/j.ecoenv.2025.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Air particulate matter (PM) is widely recognized for its potential to negatively affect human health, including changes in the upper respiratory microbiome. However, research on PM-associated microbiota remains limited and mostly focused on PM (e.g., PM2.5 and PM10). This study aims to characterize for the first time the microbiome of Total Suspended Particles (TSP) and investigate the correlations of indoor TSP with the human upper respiratory microbiome. Biological and environmental samples were collected over three collection periods lasting three weeks each, between May and July 2022 at the University of Milan and the University of Insubria Como. TSP were sampled using a filter-based technique, while respiratory samples from both anterior nares (AN) and the nasopharynx (NP) were collected using swabs. Microbiome analysis of both human (N = 145) and TSP (N = 51) samples was conducted on metagenomic sequencing data. A comparison of indoor and outdoor TSP microbiomes revealed differences in microbial diversity and taxonomic composition. The indoor samples had higher relative abundance of environmental bacteria often associated with opportunistic infections like Paracoccus sp., as well as respiratory bacteria such as Staphylococcus aureus and Klebsiella pneumoniae. Additionally, both indoor and outdoor TSP samples contained broad spectrum antibiotic resistance genes. Indoor TSP exposure was negatively associated with commensal bacteria and positively associated with Staphylococcus aureus relative abundance. Finally, a correlation between the relative abundance of respiratory bacteria identified in the indoor TSP and the upper respiratory microbiome was found, suggesting a potential interaction between TSP and the upper airways.
Collapse
Affiliation(s)
- Giulia Solazzo
- EPIGET Lab, Department of Clinical Science and Community Health, DIpartimento di Eccellenza 2023-2027, Università degli Studi di Milano; Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Rovelli
- Department of Science and High Technology, Università degli Studi dell'Insubria, Como, Italy
| | - Simona Iodice
- EPIGET Lab, Department of Clinical Science and Community Health, DIpartimento di Eccellenza 2023-2027, Università degli Studi di Milano; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Frimpong
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Science and Community Health, DIpartimento di Eccellenza 2023-2027, Università degli Studi di Milano; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Ferrari
- EPIGET Lab, Department of Clinical Science and Community Health, DIpartimento di Eccellenza 2023-2027, Università degli Studi di Milano; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Li Y, Liu X, Guo S, Wang L, Tang J. The combination of polystyrene microplastics and di (2-ethylhexyl) phthalate promotes the conjugative transfer of antibiotic resistance genes between bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117681. [PMID: 39799916 DOI: 10.1016/j.ecoenv.2025.117681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Plastic pollution has become a common phenomenon. The process of plastic degradation is accompanied by the release of microplastics and plasticizers. However, the coexistence of microplastics and plasticizers on the transfer of antibiotic resistance genes (ARGs) has not been reported until now. Here, polystyrene (PS) microplastics and plasticizer di (2-ethylhexyl) phthalate (DEHP) were used for combined treatment experiment and their effects and mechanisms on the transfer of ARGs between bacteria were explored. By increasing cell membrane permeability and the expression of correlated genes, the combined treatment group showed promoting effects on the transfer of ARGs than that of control, with the highest promoting effects observed at 1 mg/L PS and 0.1 mg/L DEHP, which was 3.0 times higher in ARGs transfer rate than that of control. It was found that PS and DEHP treatment alone also led to a higher conjugative transfer frequency, and the frequency of the combined treatment was lower than that of the corresponding single treatment group. This indicated that the effects of DEHP and microplastics on ARGs transfer might be antagonistic. Transcriptome analysis indicated that the transfer of ARGs affects bacterial ion binding, oxidative stress, and energy metabolism processes, while the expression of genes related to cell membrane permeability, DNA repair, bacterial drug resistance, and quorum sensing also increase. This study may provide new insights for explaining the combined effects of various pollutants in the environment on the spread of ARGs.
Collapse
Affiliation(s)
- Yu Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaomei Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Saisai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Wang X, Qian Y, Wang Y, Wang S, Bi J, Shi C, Han Q, Wan-Yan R, Yu Q, Li H. Metagenomics reveals the potential transmission risk of resistomes from urban park environment to human. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135387. [PMID: 39094311 DOI: 10.1016/j.jhazmat.2024.135387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Urban parks play a significant role in urban ecosystems and are strongly associated with human health. Nevertheless, the biological contamination of urban parks - opportunistic pathogens and antibiotic resistance genes (ARGs) - has been poorly reported. Here, metagenomic and 16 S rRNA sequencing methods were used to study the distribution and assembly of opportunistic pathogens and ARGs in soil and water from nine parks in Lanzhou city, and further compared them with local human gut microbiomes to investigate the potential transmission risk. Our results revealed that the most important type of drug resistance in urban parks was multidrug resistance, with various resistance mechanisms. Approximately half of ARGs were shared between human gut and park environment, and it was noteworthy that cross-species transmission might exist among some high-risk ARGs, such as mepA and mdtE, with a significant enrichment in human gut. Metagenomic binning uncovered several bacterial genomes carrying adjacent ARGs, MGEs, and virulence genes, indicating a possibility that these genes may jointly transfer among different environments, particularly from park environment to human. Our results provided a reference point for the management of environmental pollutants in urban parks.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yuan Qian
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yu Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jie Bi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Chenwei Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ruijun Wan-Yan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland microbiome, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland microbiome, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Wang Y, Wang Q, Zhang G, Li Y, Guo H, Zhou J, Wang T, Jia H, Zhu L. Masks As a New Hotspot for Antibiotic Resistance Gene Spread: Reveal the Contribution of Atmospheric Pollutants and Potential Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16100-16111. [PMID: 39137285 DOI: 10.1021/acs.est.4c03399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The consumption of disposable surgical masks (DSMs) considerably increased during the coronavirus pandemic in 2019. Herein, we explored the spread of antibiotic resistance genes (ARGs) and the potential risks of antibiotic resistant bacteria (ARB) on DSMs. At environmentally relevant concentrations, the conjugate transfer frequency (CTF) of ARGs increased by 1.34-2.37 folds by 20 μg/m3 of atmospheric water-soluble inorganic ions (WSIIs), and it increased by 2.62-2.86 folds by 80 ng/m3 of polycyclic aromatic hydrocarbons (PAHs). Total suspended particulates (TSP) further promoted the CTF in combination with WSIIs or PAHs. Under WSII and PAH exposure, gene expression levels related to oxidative stress, cell membrane, and the adenosine triphosphate (ATP) were upregulated. WSIIs predominantly induced cellular contact, while PAHs triggered ATP formation and membrane damage. Molecular dynamics simulations showed that WSIIs and PAHs reduced membrane lipid fluidity and increased membrane permeability through interactions with the phosphatidylcholine bilayer. DSM filtering performance decreased, and the CTF of ARGs increased with the wearing time. The gut simulator test showed that ARB disrupted the human gut microbial community and increased total ARG abundance but did not change the ARG abundance carried by ARB themselves. A mathematical model showed that long-term WSII and PAH exposure accelerated ARG dissemination in DSMs.
Collapse
Affiliation(s)
- Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Yutong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Solazzo G, Rovelli S, Iodice S, Chung M, Frimpong M, Bollati V, Ferrari L, Ghedin E. The microbiome of Total Suspended Particles (TSP) and its influence on the respiratory microbiome of healthy office workers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607611. [PMID: 39372735 PMCID: PMC11451605 DOI: 10.1101/2024.08.12.607611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Air particulate matter (PM) is widely recognized for its potential to negatively affect human health, including changes in the upper respiratory microbiome. However, research on PM-associated microbiota remains limited and mostly focused on PM (e.g., PM2.5 and PM10). This study aims to characterize for the first time the microbiome of Total Suspended Particles (TSP) and investigate the correlations of indoor TSP with the human upper respiratory microbiome. Biological and environmental samples were collected over three collection periods lasting three weeks each, between May and July 2022 at the University of Milan and the University of Insubria Como. TSP were sampled using a filter-based technique, while respiratory samples from both anterior nares (AN) and the nasopharynx (NP) were collected using swabs. Microbiome analysis of both human (N = 145) and TSP (N = 51) samples was conducted on metagenomic sequencing data. A comparison of indoor and outdoor TSP microbiomes revealed differences in microbial diversity and taxonomic composition. The indoor samples had higher relative abundance of environmental bacteria often associated with opportunistic infections like Paracoccus sp., as well as respiratory bacteria such as Staphylococcus aureus and Klebsiella pneumoniae. Additionally, both indoor and outdoor TSP samples contained broad spectrum antibiotic resistance genes. Indoor TSP exposure was negatively associated with commensal bacteria and positively associated with Staphylococcus aureus relative abundance. Finally, a correlation between the relative abundance of respiratory bacteria identified in the indoor TSP and the upper respiratory microbiome was found, suggesting a potential interaction between TSP and the upper airways.
Collapse
Affiliation(s)
- Giulia Solazzo
- EPIGET LAB, Department of Clinical Science and Community Health, Università degli Studi di Milano, Milan, Italy
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina Rovelli
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Simona Iodice
- EPIGET LAB, Department of Clinical Science and Community Health, Università degli Studi di Milano, Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matthew Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Frimpong
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Science and Community Health, Università degli Studi di Milano, Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Science and Community Health, Università degli Studi di Milano, Milan, Italy
- Occupational Health Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Zhou ZZ, Zhu J, Yin Y, Ding LJ. Seasonal variations of profiles of antibiotic resistance genes and virulence factor genes in household dust from Beijing, China revealed by the metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172542. [PMID: 38636860 DOI: 10.1016/j.scitotenv.2024.172542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Household-related microbiome is closely related with human health. However, the knowledge about profiles of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) which are carried by microbes inside homes and their temporal dynamics are rather limited. Here we monitored the seasonal changes of bacterial community (especially pathogenic bacteria), ARGs, and VFGs in household dust samples during two years. Based on metagenomic sequencing, the dust-related bacterial pathogenic community, ARGs, and VFGs all harbored the lowest richness in spring among four seasons. Their structure (except that of VFGs) also exhibited remarkable differences among the seasons. The structural variations of ARGs and VFGs were almost explained by mobile genetic elements (MGEs), bacterial pathogens, and particulate matter-related factors, with MGEs explaining the most. Moreover, the total normalized abundance of ARGs or VFGs showed no significant change across the seasons. Results of metagenomic binning and microbial network both showed that several pathogenic taxa (e.g., Ralstonia pickettii) were strongly linked with numerous ARGs (mainly resistant to multidrug) and VFGs (mainly encoding motility) simultaneously. Overall, these findings underline the significance of MGEs in structuring ARGs and VFGs inside homes along with seasonal variations, suggesting that household dust is a neglected reservoir for ARGs and VFGs.
Collapse
Affiliation(s)
- Zhi-Zi Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jasmine Zhu
- School of Journalism and Communication, Tsinghua University, Beijing 100084, China
| | - Yue Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|