1
|
Espinosa LDOS, Lacerda AL, Oddone MC, Kessler F, Proietti MC. Interaction of elasmobranchs with litter in South Brazil: ingestion and oviposition patterns. MARINE POLLUTION BULLETIN 2025; 216:117992. [PMID: 40279775 DOI: 10.1016/j.marpolbul.2025.117992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Elasmobranchs, one of the most endangered animal groups, have been affected by different anthropogenic stressors, including marine litter. To better understand the interactions of elasmobranchs with litter we analyzed the gastrointestinal tract of sharks and examined skate nest composition in southern Brazil. Among 47 sharks caught in longline fisheries, three had ingested mesoplastic items (FO = 6.4 %); a subsample of 18 of these sharks was assessed for microplastic ingestion, revealing 34 microplastics in 12 individuals (FO = 66 %). Gillnet-captured sharks (n = 7) only ingested three microplastics (FO = 42.85 %). Sixteen skate nests examined for litter interaction presented a total of 269 egg capsules and 1676 litter items. The FO of litter in nests was 100 %, with plastic being the predominant material (96.71 %), mainly fishing lines (85.98 %). While litter ingestion by sharks was less frequent than other groups, litter prevalence in skate nests was high and primarily linked to fishing activities.
Collapse
Affiliation(s)
| | - Ana Luzia Lacerda
- Projeto Lixo Marinho, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil; UMR 7266 LIENSs (Littoral Environnement et Sociétés), CNRS - La Rochelle Université, La Rochelle, France
| | - Maria Cristina Oddone
- Instituto de Ciências Biológicas, Setor de Morfologia, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Felipe Kessler
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Maíra Carneiro Proietti
- Projeto Lixo Marinho, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil; The Ocean Cleanup, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Aguilo-Arce J, Compa M, Corriero G, Mastrodonato M, Savino I, Semeraro D, Sureda A, Trani R, Longo C. Microplastic filtering and its physiological effects on the Mediterranean bath sponge Spongia officinalis (Porifera, Demospongiae). MARINE POLLUTION BULLETIN 2025; 215:117849. [PMID: 40112645 DOI: 10.1016/j.marpolbul.2025.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Microplastics (MPs) pose an increasing and significant threat to marine biodiversity and there is a current need to determine the effects of exposure on benthic sessile invertebrates. This study examines the filtration capacity and retention of MP particles, as well as their physiological impacts in the marine sponge Spongia officinalis, a bioindicator species. The findings revealed a very high filtration capacity for MPs within the size range of 1-5 μm, along with a rapid turnover rate, as a large portion of particles were expelled within 48 h of exposure. Histological analyses detected MP particles within the cellular structures of the analyzed tissues, indicating that MPs of this size can penetrate cellular barriers. In terms of physiological effects, detoxification activity was activated during the depuration phase, and lipid peroxidation was observed during both the exposure and depuration phases. Overall, this study provides critical insights into the filtration and retention capacity, intercellular integration of MP particles, and the physiological effects of MP exposure in S. officinalis, providing a baseline for future research.
Collapse
Affiliation(s)
- Joseba Aguilo-Arce
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Montserrat Compa
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Giuseppe Corriero
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; Interdepartmental Centre for Risk Analysis and Management in Health and Environmental Emergencies, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Maria Mastrodonato
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Ilaria Savino
- Water Research Institute, Italian National Research Council, CNR-IRSA, 70132 Bari, Italy.
| | - Daniela Semeraro
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Roberta Trani
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Caterina Longo
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; Interdepartmental Research Centre for Coastal Dynamics, University of Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
3
|
Rondon R, Cárdenas CA, Cosseau C, Bergami E, Balbi T, Corsi I, González-Aravena M. Physiological and molecular effects of contaminants of emerging concerns of micro and nano-size in aquatic metazoans: overview and current gaps in Antarctic species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34457-6. [PMID: 39066941 DOI: 10.1007/s11356-024-34457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Although Antarctica is the most isolated continent on Earth, its remote location does not protect it from the impacts of human activities. Antarctic metazoans such as filter-feeding invertebrates are a crucial component of the Antarctic benthos. They play a key role in the benthic-pelagic carbon flux in coastal areas by filtering particles and planktonic organisms from the sediment-water interface. Due to their peculiar ecological niche, these organisms can be considered a wasp-waist in the ecosystem, making them highly sensitive to marine pollution. Recently, anthropogenic particles such as micro-nanoplastics and manufactured nanoparticles (MNP) have been classified as contaminants of emerging concern (CEC) due to their small size range, which also overlaps with the preferred particle size ingested by aquatic metazoans. Indeed, it has been demonstrated that some species such as Antarctic krill can ingest, transform, and release MNPs, making them newly bioavailable for other Antarctic filter-feeding organisms. Similarly, the production and use of anthropogenic MNP are rapidly increasing, leading to a growing presence of materials, such as nano-sized metal-oxides, in the environment. For these reasons, it is important to provide evidence of the adverse effects of such emerging contaminants at sub-lethal concentrations in environmental risk assessments. These contaminants may cause cascade effects with consequences not only on individuals but also at the community and ecosystem levels. In this review, we discuss the state-of-the-art knowledge on the physiological and molecular effects of anthropogenic MNP in Antarctic aquatic metazoans. We further highlight the importance of identifying early biomarkers using sessile metazoans as sentinels of environmental health.
Collapse
Affiliation(s)
- Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Céline Cosseau
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan "Via Domitia", Perpignan, France
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 213/D, Modena, Italy
| | - Teresa Balbi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
4
|
De-la-Torre GE, Santillán L, Dioses-Salinas DC, Yenney E, Toapanta T, Okoffo ED, Kannan G, Madadi R, Dobaradaran S. Assessing the current state of plastic pollution research in Antarctica: Knowledge gaps and recommendations. CHEMOSPHERE 2024; 355:141870. [PMID: 38570048 DOI: 10.1016/j.chemosphere.2024.141870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Antarctica stands as one of the most isolated and pristine regions on our planet. Regardless, recent studies have evidenced the presence of plastic pollution in Antarctic environments and biota. While these findings are alarming and put into perspective the reach of plastic pollution, it is necessary to assess the current knowledge of plastic pollution in Antarctica. In the present review, an updated literature review of plastic pollution in multiple Antarctic environmental compartments and biota was conducted. Studies were cataloged based on environmental compartments (e.g., sediments, seawater, soil, atmosphere) and biota from different ecological niches. A detailed analysis of the main findings, as well as the flaws and shortcomings across studies, was conducted. In general terms, several studies have shown a lack of adequate sampling and analytical procedures for plastic research (particularly in the case of microplastics) and standard procedures; thus, compromising the reliability of the data reported and comparability across studies. Aiming to guide future studies and highlight research needs, a list of knowledge gaps and recommendations were provided based on the analysis and discussion of the literature and following standardized procedures.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Luis Santillán
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | | | - Emma Yenney
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Landau, Germany
| | - Tania Toapanta
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Gunasekaran Kannan
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Reyhane Madadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| |
Collapse
|
5
|
Papale M, Giannarelli S, Azzaro di Rosamarina M, Ghezzi L, Lo Giudice A, Rizzo C. Chemical and microbiological insights into two littoral Antarctic demosponge species: Haliclona ( Rhizoniera) dancoi (Topsent 1901) and Haliclona ( Rhizoniera) scotti (Kirkpatrick 1907). Front Microbiol 2024; 15:1341641. [PMID: 38404594 PMCID: PMC10884823 DOI: 10.3389/fmicb.2024.1341641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Antarctic Porifera have gained increasing interest as hosts of diversified associated microbial communities that could provide interesting insights on the holobiome system and its relation with environmental parameters. Methods The Antarctic demosponge species Haliclona dancoi and Haliclona scotti were targeted for the determination of persistent organic pollutant (i. e., polychlorobiphenyls, PCBs, and polycyclic aromatic hydrocarbons, PAHs) and trace metal concentrations, along with the characterization of the associated prokaryotic communities by the 16S rRNA next generation sequencing, to evaluate possible relationships between pollutant accumulation (e.g., as a stress factor) and prokaryotic community composition in Antarctic sponges. To the best of our knowledge, this approach has been never applied before. Results Notably, both chemical and microbiological data on H. scotti (a quite rare species in the Ross Sea) are here reported for the first time, as well as the determination of PAHs in Antarctic Porifera. Both sponge species generally contained higher amounts of pollutants than the surrounding sediment and seawater, thus demonstrating their accumulation capability. The structure of the associated prokaryotic communities, even if differing at order and genus levels between the two sponge species, was dominated by Proteobacteria and Bacteroidota (with Archaea abundances that were negligible) and appeared in sharp contrast to communities inhabiting the bulk environment. Discussions Results suggested that some bacterial groups associated with H. dancoi and H. scotti were significantly (positively or negatively) correlated to the occurrence of certain contaminants.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council, Messina, Italy
| | - Stefania Giannarelli
- Department of Chemical and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | | - Lisa Ghezzi
- Department of Earth Sciences, University of Pisa, Pisa, Italy
| | | | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council, Messina, Italy
- Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| |
Collapse
|