1
|
Prajapati A, Jadhao P, Kumar AR. Atmospheric microplastics deposition in a central Indian city: Distribution, characteristics and seasonal variations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126183. [PMID: 40185191 DOI: 10.1016/j.envpol.2025.126183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/15/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Atmospheric microplastics (AMPs) transport and deposition in urban areas contribute to microplastics pollution. The present study investigates AMPs deposition, characteristics, potential sources, and the influence of meteorological factors in a central Indian city. AMPs were collected over three land-use types, viz. institutional, commercial, and industrial areas, during four seasons: summer, monsoon, autumn, and winter. The deposition flux of microplastics ranged from 212.53 ± 52.32 to 543.25 ± 71.23 particles/m2/day. The AMPs were predominantly fibres (87.84 %), followed by films (5.43 %), with particle size <1000 μm contributed 43.67 %. The predominant polymer types identified were polyethylene terephthalate (PET, 37.39 %), nylon (20.49 %), and polypropylene (PP, 10.27 %). Higher deposition fluxes were recorded in summer, with 491.06 ± 73.37 particles/m2/day. Correlation analysis revealed a negative correlation between rainfall and AMPs deposition, suggesting a potential cleaning role of rainfall. The estimated annual deposition flux of AMPs in Nagpur city was 3.22 × 1013 particles. Higher AMPs deposition was attributed to plastic waste littering, industrial emissions, and textiles. The estimated mean annual inhalation exposures of AMPs of size 50-250 μm for children and adults were 7375.84 ± 1312.89 and 3738.17 ± 665.39 MPs/kg-bw/year, respectively. The findings of this study contribute to understanding the fate of AMPs and its implications for human exposure. The findings underscore the importance of reducing and managing plastic waste.
Collapse
Affiliation(s)
- Archana Prajapati
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India; Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Pradip Jadhao
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India; Acadamy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi, 201002, India
| | - Asirvatham Ramesh Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India; Acadamy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi, 201002, India.
| |
Collapse
|
2
|
Khan A, Araminienė V, Uogintė I, Varnagirytė-Kabašinskienė I, Černiauskas V, Gudynaitė-Franckevičienė V, Džiugys A, Davulienė L, Misiulis E, Davtalab M, Byčenkienė S. Evaluating the role of urban green infrastructure in combating traffic-related microplastic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 983:179688. [PMID: 40394788 DOI: 10.1016/j.scitotenv.2025.179688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
As cities grapple with the invisible threat of airborne microplastics (MPs), non-exhaust emissions, especially traffic-related MPs, contribute significantly to urban air pollution. While emission regulations have reduced exhaust pollutants, non-exhaust sources remain a significant challenge. Urban green infrastructure (UGI), valued for aesthetic and ecological functions, remains underexplored for MP mitigation. This study assesses the role of a Thuja occidentalis hedge in Kaunas, Lithuania, as a natural barrier against traffic-related MPs. Over a four-month seasonal campaign, passive deposition sampling was conducted at four distances from the street, with additional sampling in the hedge's absence for an experimental-control comparison. Optical microscopy revealed distinct size and shape distributions, while μ-FTIR spectroscopy confirmed dominant polymer compositions: PE (69.05 %) in spring, PIR (35.96 %) in winter, and ACRs (28.52 %) in summer. The highest average fragment concentration occurred in spring (98.25 %), while fibers peaked in winter (12.75 %). Black was dominant year-round, with the highest average in spring (55.35 %), followed by white in winter (42.16 %) and brown in spring (26.98 %). MPs in the 50-100 μm range were most abundant, reaching 55.26 % in spring. A similar trend appeared in vertical MP distribution. The most pronounced difference was noticed at (+1 m) behind the hedge, where MP concentration was 4.59 particles cm-2 day-1, significantly lower than 9.2 particles cm-2 day-1 in the control. The hedge showed peak removal efficiencies in summer (64.5 % total MPs, 64.3 % fragments, 71.4 % fibers). The 50-100 μm range exhibited the highest efficiency, averaging 67.25 % with a seasonal high of 94.24 % in spring. Strong Mantel (rm) and Pearson's (r) correlations of very small MPs (<20 μm) at -1 m suggest a significant influence from tire wear, brake wear, and road dust resuspension. This study highlights Thuja hedge as an active defender against MP pollution, advocating for its strategic integration into urban design to enhance public health protection.
Collapse
Affiliation(s)
- Abdullah Khan
- Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, Vilnius, Lithuania.
| | - Valda Araminienė
- Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Instituto av. 1, Akademija, Kėdainiai distr., Lithuania
| | - Ieva Uogintė
- Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, Vilnius, Lithuania
| | | | - Valentinas Černiauskas
- Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Instituto av. 1, Akademija, Kėdainiai distr., Lithuania
| | - Valda Gudynaitė-Franckevičienė
- Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Instituto av. 1, Akademija, Kėdainiai distr., Lithuania
| | - Algis Džiugys
- Lithuanian Energy Institute (LEI), Breslaujos str. 3, Kaunas, Lithuania
| | - Lina Davulienė
- Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, Vilnius, Lithuania
| | - Edgaras Misiulis
- Lithuanian Energy Institute (LEI), Breslaujos str. 3, Kaunas, Lithuania
| | - Mehri Davtalab
- Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, Vilnius, Lithuania
| | - Steigvilė Byčenkienė
- Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, Vilnius, Lithuania
| |
Collapse
|
3
|
Kumar K, Ramli H, Manan TSBA. Microplastic proliferation in Malaysia's waterways: bridging knowledge gaps for environmental health. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:605. [PMID: 40289044 DOI: 10.1007/s10661-025-14005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Microplastic (MP) pollution is an imperative environmental concern in Malaysia, distinguished by its insidious nature and enduring detrimental impacts. The nation grapples with challenges such as intensified industrial activities, inadequate plastic waste management, and insufficient law enforcement. There is an urgent need to address Malaysian waterways to mitigate this "Silent Killer" that compromises the food chain, with approximately 50% of MP ingestion attributed to fish, averaging 502.3 mg per individual daily. This review critically evaluates both primary and secondary sources of MP pollution within Malaysia's aquatic ecosystems, categorizing them into three distinct groups: (1) terrestrial sources, (2) aquatic sources, and (3) atmospheric sources. The regulatory frameworks and socioeconomic determinants, including the escalation of vehicle usage and industrial operations, inform these classifications. The research compilation utilized scientific databases, academic conferences, and sector-specific reports. The study underscores the paucity of information regarding MP pollution. It highlights the necessity for comprehensive investigations employing standardized methodologies and primary data collection, encompassing seafood samples, small streams, drainage systems, and sludge analysis. Additionally, secondary data sources, such as air samples from industrial precincts and aquatic environments, are essential for assessing MP. Raising public awareness about post-consumer plastic waste management and oil disposal in restaurants and workshops is crucial. Robust legal frameworks must be enacted and enforced across the nation, extending beyond urban locales, with stringent enforcement and standardized data gathering being vital for formulating effective strategies to reduce plastic waste and foster a safer ecological environment.
Collapse
Affiliation(s)
- Kapil Kumar
- School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
| | - Harris Ramli
- School of Civil Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
| | - Teh Sabariah Binti Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Teh Sabariah Binti Abd Manan, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| |
Collapse
|
4
|
Huang Z, Liu D, Cheng W, Zhang W, He Z, Huang B, Guo S, Zhao B, Wang Y, Zhang Y, Jiang G. Microplastics in the Amur tiger's habitat: Occurrence, characteristics, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138380. [PMID: 40288321 DOI: 10.1016/j.jhazmat.2025.138380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Microplastics (MPs) are emerging environmental pollutants that pose a significant threat to wildlife within forest ecosystems. However, the quantity and types of MPs in wildlife forest habitats remain unclear. This study is the first to assess the distribution of MPs in the Amur tiger habitat of northeast China. Our results showed that MPs were detected in soil, water, atmosphere, forage plants, and ungulate and top predator feces within the forest ecosystem, respectively. The average diameter of all detected MPs was 44.99 ± 34.80μm. The predominant polymers found in the samples were polyamide, polyvinyl chloride, and polyurethane. Certain sample types shared similar MP polymer type distributions, indicating potential links in their sources and transfer pathways. Consequently, these findings provide some new insights on the new pollution problem in Amur tiger forest habitats and prompt us to consider how to control and manage the MPs pollution sources in the tiger conservation.
Collapse
Affiliation(s)
- Zekai Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Dongqi Liu
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Wannian Cheng
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Wentao Zhang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Zhijian He
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Baoxiang Huang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Shuhao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Bitian Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Yihan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China
| | - Yuanyuan Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Harbin 150040, PR China.
| | - Guangshun Jiang
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, PR China; Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
5
|
Tanjil RH, Islam MS, Islam Z, Roy S, Nahian S, Salam A. Atmospheric Microplastic Pollution in Textile Industrial Areas: Source, Composition, and Health Risk Assessment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:51. [PMID: 40119914 DOI: 10.1007/s00128-025-04021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
Microplastics (MPs) have been increasingly recognized as a pervasive environmental pollutant, with their presence extending to the atmosphere in urban, suburban, and even remote locations. Despite this, the precise sources of atmospheric microplastics remain elusive. Our study focuses on elucidating the contribution of textile industries to atmospheric microplastic pollution by investigating the atmospheric fallout within and around textile industrial areas. Samples of suspended MPs were collected over seven days from indoor and outdoor locations in six textile industries at Dhaka city, Bangladesh. Through examination using fluorescent microscopy and Fourier transform infrared (FTIR) spectroscopy, we identified transparent and black microplastics, predominantly synthetic textile fibres with lengths ranging from 20 to 180 μm. Chemical analysis revealed polymers such as polyester, nylon, regenerated cellulose, and natural fibres among the observed microplastics. Deposition rates inside the textile factory ranged from 109.0 × 103 to 245.3 × 103 MPs/m2/day, while those outside ranged from 19.3 × 103 to 72.7 × 103 MPs/m2/day, indicating a significant contribution of textile operations to atmospheric microplastic contamination. Furthermore, we calculated the exposure of textile workers to microplastics through inhalation and ingestion, with average rates of 8.7 ± 4.3 mg/kg-Bw/year and 97.9 ± 17.5 mg/kg-Bw/year, respectively. These findings emphasize the substantial health risks faced by textile workers due to microplastic exposure. In conclusion, our study provides compelling evidence implicating the textile factory as a noteworthy source of atmospheric microplastic pollution. It is crucial to address this issue in order to reduce environmental contamination and protect the health of those employed in textile production plants.
Collapse
Affiliation(s)
- Riajul Haq Tanjil
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Safiqul Islam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Zubayer Islam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shatabdi Roy
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Samiha Nahian
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abdus Salam
- Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
6
|
Khalid AA, Abd Razak NI, Anuar ST, Ibrahim YS, Rusli MU, Jaafar M. Microplastics contamination in natural sea turtle nests at Redang Island, Malaysia. MARINE POLLUTION BULLETIN 2025; 211:117412. [PMID: 39674038 DOI: 10.1016/j.marpolbul.2024.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
This study presents the first evidence of microplastics in natural sea turtle nests at Chagar Hutang Turtle Sanctuary (CHTS) on Redang Island, a crucial habitat for green turtles. Microplastics were detected in all studied turtle nests (0-70 cm depth), with a total abundance of 12,270 microplastic items per kg dry weight of sand. Fibers (80.7 %) were the most prevalent shape, primarily black (37.9 %), with a high proportion of small-sized particles (<300-1000 μm), indicating prolonged accumulation and environmental degradation. These microplastics, primarily polyethylene terephthalate (PET) and polyethylene (PE), are likely from fishing nets, food packaging, and textiles. Despite the sanctuary's remote location, it is heavily impacted by microplastics carried by tides and wind, raising concerns about their potential effects on turtle egg incubation. The findings offer critical insights into the impact of microplastics on turtle habitats and underscore the urgent need for conservation efforts to protect green sea turtles in Malaysia.
Collapse
Affiliation(s)
- Aina Arifah Khalid
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nur Izzati Abd Razak
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Sabiqah Tuan Anuar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yusof Shuaib Ibrahim
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mohd Uzair Rusli
- Sea Turtle Research Unit (SEATRU), Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Maisarah Jaafar
- Microplastic Research Interest Group (MRIG), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
7
|
Liu Y, Nie Z, Meng Y, Liu G, Chen Y, Chai G. Influence of meteorological conditions on atmospheric microplastic transport and deposition. ENVIRONMENTAL RESEARCH 2025; 265:120460. [PMID: 39603587 DOI: 10.1016/j.envres.2024.120460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Atmospheric microplastics are of great concern because of their potential impact on the environment and human health. Although several studies have shown the presence of large quantities of microplastics in the air, questions about the transport and deposition of microplastics in the atmosphere remain unanswered. Based on these shortcomings, this review provides a comprehensive overview of the influence of meteorological conditions on atmospheric microplastic fate. Dry and wet deposition are the main removal mechanisms for atmospheric microplastic. Furthermore, by exploring how wind facilitates the long-range transport of microplastics between terrestrial and marine ecosystems, establishing a global microplastic cycle. Besides, this review also examines the effects of other meteorological conditions on atmospheric microplastic transport. Characteristics of current atmospheric microplastic models are summarized, particularly with respect to the consideration of meteorological conditions. Finally, we propose future research directions and mitigation measures for atmospheric microplastic pollution, which are necessary for mitigating atmospheric microplastic pollution and protecting ecosystems and human health.
Collapse
Affiliation(s)
- Yichen Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Zhongquan Nie
- Chengdu Industry and Trade College, Chengdu, 611730, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China.
| | - Guodong Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Yu Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| | - Guangming Chai
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resources and Hydropower, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Yang H, Zhang J, Li Z, Pu J, Peng C, Liu C, Wang L. Potential source contribution function coupled with mass spectrometry detection to identify source of atmospheric polyethylene terephthalate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125325. [PMID: 39551379 DOI: 10.1016/j.envpol.2024.125325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Source identification of atmospheric microplastics (MPs) is crucial for the development of mitigation policies. Compared with wind directions or backward trajectories of air masses, the potential source contribution function (PSCF) analysis identifies more comprehensive sources of atmospheric particles. However, conducting PSCF analysis requires hourly pollutant concentration data, which cannot be met by the atmospheric MPs abundance obtained through commonly used methods. In this study, total suspended particles (TSP) samples were collected hourly and the concentrations of atmospheric polyethylene terephthalate (PET) were detected using a liquid chromatography-tandem mass spectrometry. Atmospheric concentrations of PET MPs were 112.9 ± 39.04 ng/m³ (average ± SD). Based on the hourly backward trajectories of air masses and the varied PET concentrations at the sampling site, potential sources of atmospheric PET were identified by PSCF analysis. The backward trajectory-based method indicates that atmospheric PET of the target site in this study primarily originates from dry farmlands. In comparison, both the residential areas and the dry farmlands were identified by PSCF as major sources of atmospheric PET at the receptor site. In contrast, both the backward-trajectory based method and PSCF analysis indicate that TSP mainly originates from the dry farmlands near the sampling site. This indicates that atmospheric PET in urban areas may have different sources from those of TSP, and PSCF is a suitable method for identifying sources of atmospheric PET.
Collapse
Affiliation(s)
- Hanling Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Junjie Zhang
- Department of Plant and Environmental Sciences (PLEN), University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark
| | - Zhiwanxin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jian Pu
- Institute for the Advanced Study of Sustainability, United Nations University, Jingumae 5-53-70, Shibuya-ku, Tokyo, 150-8925, Japan; Institute for Future Initiatives, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
9
|
Jung CC, Chao YC, Hsu HT, Gong DW. Spatial and seasonal variations of atmospheric microplastics in high and low population density areas at the intersection of tropical and subtropical regions. ENVIRONMENTAL RESEARCH 2024; 263:119996. [PMID: 39284491 DOI: 10.1016/j.envres.2024.119996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
There is limited information regarding spatial and seasonal variations of atmospheric microplastics (MPs) and factors influencing MPs at the intersection of tropical and subtropical regions. A one-year study was conducted at sites in a high-population-density village (HPDV) and a low-population-density village (LPDV) in Taiwan to investigate the characteristics and influencing factors of airborne MPs. The predominant shapes, sizes, and polymer compositions of MPs were fragments, 3 to 25 and 26-50 μm, and polyamide at both sites. Seasonal variation in MP morphologies was not significant. Average MP concentrations were 2.20 ± 2.97 particles/m3 and 1.92 ± 2.35 particles/m3 at the HPDV and LPDV sites, respectively, and did not differ significantly. Higher concentrations and smaller sizes of MPs were found during the summer at both sites, while the predominant wind direction was southerly or southwesterly. In samples with temperatures exceeding 25 °C, the temperature was positively associated with MP concentrations at both the HPDV and LPDV sites. These results reflect that temperature influences the variations in the concentrations and sizes of MPs at our study site. Future research should consider the adverse risks of MP inhalation during the hot season. Moreover, when sites with different population densities and levels of human activity are closed, MP concentrations will not differ significantly between these areas since airflow can transport these particles from high-population-density areas into low-population-density areas in a short time.
Collapse
Affiliation(s)
- Chien-Cheng Jung
- Department of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City, 40640, Taiwan.
| | - Yuan-Chen Chao
- Department of Occupational Safety and Health, China Medical University, Taichung City, 40640, Taiwan.
| | - Hui-Tsung Hsu
- Department of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City, 40640, Taiwan.
| | - Da-Wei Gong
- Department of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City, 40640, Taiwan.
| |
Collapse
|
10
|
Yang H, Xue Y, Yang J, Suvdantsetseg B, Otgonbayar K, Liu C, Sun H, Wang L. Assessing the external atmospheric input of microplastics: Two strategies based on polymer composition and aging characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176905. [PMID: 39401591 DOI: 10.1016/j.scitotenv.2024.176905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Microplastics (MPs) can be transported over long distances in the environment, hence, distinguishing between MPs generated locally and those introduced from external sources is necessary for regional MP pollution management. In this study, MPs pollution in the dust of Siziwang banner (Sizi), a sparsely populated area on the Mongolian Plateau, and Hohhot, a city with large populations, was observed. The high proportion of small MPs in Sizi (<25 μm), combined with the fact that most air masses reaching the area have undergone long-distance transport, supports the presence of external input through atmosphere. Based on the significantly different composition distributions and surface characteristics of the small sized MPs in Sizi and Hohhot, a composition-based Bray-Curtis similarity index (Comp-BCs) and a carbonyl index-based BCs index (CI-BCs) were established. Contributions of the external MPs input to small MPs in Sizi were estimated as 23-36 %, indicating that the role of atmospheric input on MPs pollution in sparsely populated areas should not be overlooked.
Collapse
Affiliation(s)
- Hanling Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yining Xue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jintao Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Balt Suvdantsetseg
- Department of Administration and International cooperation, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Khureldavaa Otgonbayar
- Laboratory of Ecological Chemistry, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
11
|
Hoang VH, Nguyen MK, Hoang TD, Ha MC, Huyen NTT, Bui VKH, Pham MT, Nguyen CM, Chang SW, Nguyen DD. Sources, environmental fate, and impacts of microplastic contamination in agricultural soils: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175276. [PMID: 39102948 DOI: 10.1016/j.scitotenv.2024.175276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The pervasive presence of microplastics has emerged as a pressing global environmental concern, posing threats to food security and human health upon infiltrating agricultural soils. These microplastics primarily originate from agricultural activities, including fertilizer inputs, compost-based soil remediation, irrigation, and atmospheric deposition. Their remarkable durability and resistance to biodegradation contribute to their persistent presence in the environment. Microplastics within agricultural soils have prompted concerns regarding their potential impacts on agricultural practices. Functioning as significant pollutants and carriers of microcontaminants within agricultural ecosystems, microplastics and their accompanying contaminants represent ongoing challenges. Within these soil ecosystems, the fate and transportation of microplastics can detrimentally affect plant growth, microbial communities, and, subsequently, human health via the food chain. Specifically, microplastics interact with soil factors, impacting soil health and functionality. Their high adsorption capacity for hazardous microcontaminants exacerbates soil contamination, leading to increased adverse effects on organisms and human health. Due to their tiny size, microplastic debris is easily ingested by soil organisms and can transfer through the food chain, causing physiological and/or mechanical damage. Additionally, microplastics can affect plant growth and have the potential to accumulate and be transported within plants. Efforts to mitigate these impacts are crucial to safeguarding agricultural sustainability and environmental health. Future research should delve into the long-term impacts of environmental aging processes on microplastic debris within agricultural soil ecosystems from various sources, primarily focusing on food security and human beings.
Collapse
Affiliation(s)
- Van-Hiep Hoang
- Vietnam National University, Hanoi - School of Interdisciplinary Sciences and Arts, 144 Xuan Thuy Street, Cau Giay District, Hanoi 100000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam.
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Viet Nam
| | - Minh Cuong Ha
- School of Aerospace Engineering (SAE), University of Engineering and Technology (UET), Vietnam National University (VNU), Hanoi 100000, Viet Nam
| | - Nguyen Thi Thanh Huyen
- Faculty of International Economics, Foreign Trade University, Vietnam, Dong Da District, Hanoi, Viet Nam
| | - Vu Khac Hoang Bui
- Laboratory for Advanced Nanomaterials and Sustainable Energy Technologies, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Minh-Thuan Pham
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 83347, Taiwan; Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Cong-Manh Nguyen
- Department of Aquatic and Atmospheric Environment Research, Research Institute of Biotechnology and Environment, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
12
|
Xu S, Cui B, Zhang W, Liu R, Liu H, Zhu X, Huang X, Liu M. Microplastics in the atmospheric of the eastern coast of China: different function areas reflecting various sources and transport. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:461. [PMID: 39352598 DOI: 10.1007/s10653-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Suspended atmospheric microplastics (SAMPs) display varying occurrence characteristics on different underlying surfaces in urban areas. This study investigated the occurrence characteristics, source apportionment, and transportation patterns of SAMPs in two typical underlying surfaces: the downtown area (Site T) and the industrial area (Site C) of a coastal city in China. In the spring of 2023, a total of 32 types comprising 1325 SAMPs were detected. The average MP abundances were found to be 3.74 ± 2.86 n/m3 in Site T and 2.67 ± 1.68 n/m3 in Site C. In Site T, SAMPs attributed to living source constituted 78.05%, while industry was the main source in Site C with a proportion reaching 42.89%, consistent with the functional zoning of the underlying surface. Furthermore, HYSPLIT analysis revealed that there was no significant difference between these two sites in long-distance horizontal transport affected by external airflow regardless of altitude; conversely, PCA indicated a notable correlation between vertical velocity and both abundance and species diversity. According to the hourly average wind speeds, the maximum transmission distance was computed as 350 km for updraft and the minimum transmission distances was as low as 32 m for downdraft. Subsequently, the coincidence between the source proportion of SAMPs on random day and meteorological parameters confirmed the synergistic impact on SAMPs transport influenced by functional zoning, geographic environment, and vertical velocity.
Collapse
Affiliation(s)
- Sheng Xu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Bowen Cui
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Weixin Zhang
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Ruijing Liu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Hao Liu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Xiaowei Zhu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Xuqing Huang
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Minyi Liu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China.
| |
Collapse
|
13
|
Nazeer N, Bhargava A, Soni N, Tiwari R, Ratre P, Mishra PK. Unravelling the molecular dimensions of atmospheric Micro(nano)Plastics: Exploring potential impacts on human health and strategies for detection. PHYSICS AND CHEMISTRY OF THE EARTH, PARTS A/B/C 2024; 135:103604. [DOI: 10.1016/j.pce.2024.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
14
|
Ji Q, Zhang Y, Xia Y, Wang X, He M, Yang Y, Sabel CE, Huang B, Zhu F, Shao M, Xie E, Yan G, Li G, Zhou A, He H, Zhang L, Jin Z. Centennial Records of Microplastics in Lake Cores in Huguangyan Maar Lake, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11140-11151. [PMID: 38867458 DOI: 10.1021/acs.est.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Microplastic records from lake cores can reconstruct the plastic pollution history. However, the associations between anthropogenic activities and microplastic accumulation are not well understood. Huguangyan Maar Lake (HML) is a deep-enclosed lake without inlets and outlets, where the sedimentary environment is ideal for preserving a stable and historical microplastic record. Microplastic (size: 10-500 μm) characteristics in the HML core were identified using the Laser Direct Infrared Imaging system. The earliest detectable microplastics appeared unit in 1955 (1.1 items g-1). The microplastic abundance ranged from n.d. to 615.2 items g-1 in 1955-2019 with an average of 134.9 items g-1. The abundance declined slightly during the 1970s and then increased rapidly after China's Reform and Opening Up in 1978. Sixteen polymer types were detectable, with polyethylene and polypropylene dominating, accounting for 23.5 and 23.3% of the total abundance, and the size at 10-100 μm accounted for 80%. Socioeconomic factors dominated the microplastic accumulation based on the random forest modeling, and the contributions of GDP per capita, plastic-related industry yield, and total crop yield were, respectively, 13.9, 35.1, and 9.3% between 1955-2019. The total crop yield contribution further increased by 1.7% after 1978. Coarse sediment particles increased with soil erosion exacerbated microplastics discharging into the sediment.
Collapse
Affiliation(s)
- Qingsong Ji
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yanxia Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus 8000, Denmark
- BERTHA - Big Data Centre for Environment and Health, Department of Public Health, Aarhus University, Aarhus 8000, Denmark
| | - Yubao Xia
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Xinkai Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Maoyong He
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Clive E Sabel
- BERTHA - Big Data Centre for Environment and Health, Department of Public Health, Aarhus University, Aarhus 8000, Denmark
- Department of Public Health, Aarhus University, Aarhus 8000, Denmark
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, U.K
| | - Bin Huang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Min Shao
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Enze Xie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guojing Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guonai Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Aoyu Zhou
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhangdong Jin
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
15
|
Chen Y, Meng Y, Liu G, Huang X, Chai G. Probabilistic Estimation of Airborne Micro- and Nanoplastic Intake in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9071-9081. [PMID: 38748887 DOI: 10.1021/acs.est.3c09189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Little research exists on the magnitude, variability, and uncertainty of human exposure to airborne micro- and nanoplastics (AMNPs), despite their critical role in human exposure to MNPs. We probabilistically estimate the global intake of AMNPs through three main pathways: indoor inhalation, outdoor inhalation, and ingestion during indoor meals, for both children and adults. The median inhalation of AMPs is 1,207.7 (90% CI, 42.5-8.48 × 104) and 1,354.7 (90% CI, 47.4-9.55 × 104) N/capita/day for children and adults, respectively. The annual intake of AMPs is 13.18 mg/capita/a for children and 19.10 mg/capita/a for adults, which is approximately one-fifth and one-third of the mass of a standard stamp, assuming a consistent daily intake of medians. The majority of AMP number intake occurs through inhalation, while the ingestion of deposited AMPs during meals contributes the most in terms of mass. Furthermore, the median ANP intake through outdoor inhalation is 9,638.1 N/day (8.23 × 10-6 μg/d) and 5,410.6 N/day (4.62 × 10-6 μg/d) for children and adults, respectively, compared to 5.30 × 105 N/day (5.79 × 10-4 μg/d) and 6.00 × 105 N/day (6.55 × 10-4 μg/d) via indoor inhalation. Considering the increased toxicity of smaller MNPs, the significant number of ANPs inhaled warrants great attention. Collaborative efforts are imperative to further elucidate and combat the current MPN risks.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Guodong Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Xiaohua Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Guangming Chai
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Soliveres S, Casado-Coy N, Martínez JE, Sanz-Lázaro C. Anthropogenic and environmental factors partly co-determine the level, composition and temporal variation of beach debris. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133843. [PMID: 38394899 DOI: 10.1016/j.jhazmat.2024.133843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The accumulation of human-derived waste on our coasts is an escalating phenomenon, yet the relative importance and potential interactions among its main drivers are not fully understood. We used citizen-science standardized collections to investigate how anthropogenic and environmental factors influence the level, composition, and temporal variation of beach debris. An average of 58 kg and 803 items/100 m, dominated by single-use items of land (rather than sea) origin, were collected in the 881 beaches sampled. Interactions between anthropogenic and environmental factors (e.g., human use × beach substrate) were the strongest predictors of beach debris, accounting for 34% of the variance explained in its amount and composition. Beach debris showed a highly stochastic temporal variation (adjusted R2 = 0.05), partly determined by interactions between different local and landscape anthropogenic pressures. Our results show that both environmental and anthropogenic factors (at the local and landscape scale) co-determine the level and composition of beach debris. We emphasize the potential of citizen-science to inform environmental policy, showing that land-originated single-use items dominate beach debris, and the importance of considering their multiple anthropogenic and environmental drivers to improve our low predictive power regarding their spatio-temporal distribution.
Collapse
Affiliation(s)
- Santiago Soliveres
- Department of Ecology, University of Alicante, Spain; Institute of multidisciplinary environmental studies "Ramón Margalef", University of Alicante, Spain.
| | - Nuria Casado-Coy
- Institute of multidisciplinary environmental studies "Ramón Margalef", University of Alicante, Spain
| | | | - Carlos Sanz-Lázaro
- Department of Ecology, University of Alicante, Spain; Institute of multidisciplinary environmental studies "Ramón Margalef", University of Alicante, Spain
| |
Collapse
|
17
|
Chandrakanthan K, Fraser MP, Herckes P. Microplastics are ubiquitous and increasing in soil of a sprawling urban area, Phoenix (Arizona). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167617. [PMID: 37804992 DOI: 10.1016/j.scitotenv.2023.167617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Microplastics are environmental contaminants that have been extensively studied in marine and aquatic environments; terrestrial ecosystems, where most microplastics originate and have the potential to accumulate, typically receive less attention. This study aims to investigate the spatial and temporal soil concentrations of microplastics in a large desert metropolitan area, the Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) area. Soil samples from the Ecological Survey of Central Arizona (ESCA) surveys (2005 and 2015) were leveraged to study spatial distributions and the temporal change of microplastic abundances. The temporal soil microplastics data were supplemented by microplastics deposition fluxes in a central location within the area (Tempe, AZ) for a period of one year (Oct 5th, 2020 to Sept 22nd, 2021). Samples were processed and microplastics were counted under an optical microscope to obtain quantitative information of their distribution in soil. Results for the spatial variation of the microplastic abundances in soil samples in Phoenix and the surrounding areas of the Sonoran Desert from 2015 depict microplastics as ubiquitous and abundant in soils (122 to 1299 microplastics/kg) with no clear trends between different locations. Microplastics deposition fluxes show substantial deposition in the local area (71 to 389 microplastics/m2/day with an average deposition flux of 178 microplastics/m2/day) but the role of resuspension and redistribution by dust storms to deposition may contribute to the unclear spatial trends. Comparison between the 2005 and 2015 surveys show a systematic increase in the abundance of microplastics and a decrease in microplastics size. Micro-Raman spectroscopy identified a variety of plastics including PE, PS, PVC, PA, PES and PP. However, a majority of microplastics remained chemically unidentifiable. Polyethylene was present in 75 % of the sampling sites and was the most abundant polymer on average in all soil samples.
Collapse
Affiliation(s)
| | - Matthew P Fraser
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
18
|
Jafarova M, Grifoni L, Renzi M, Bentivoglio T, Anselmi S, Winkler A, Di Lella LA, Spagnuolo L, Aherne J, Loppi S. Robinia pseudoacacia L. (Black Locust) Leaflets as Biomonitors of Airborne Microplastics. BIOLOGY 2023; 12:1456. [PMID: 38132282 PMCID: PMC10740701 DOI: 10.3390/biology12121456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Here we investigate the suitability of Robinia pseudoacacia L. (black locust) leaflets as a novel biomonitor of airborne microplastics (MPs) including tyre wear particles (TWPs). Leaflets were collected from rural roadside locations (ROs, n = 5) and urban parks (UPs, n = 5) in Siena, Italy. MPs were removed by washing, identified by stereomicroscope, and analysed for polymer type by Fourier transform infrared spectroscopy. Daily MP deposition was estimated from leaf area. The mass magnetic susceptibility and the bioaccumulation of traffic-related potentially toxic elements (PTEs) were also analysed. The total number of MPs at ROs was significantly higher at 2962, dominated by TWPs, compared with 193 in UPs, where TWPs were not found. In contrast, total microfibres were significantly higher in UPs compared with ROs (185 vs. 86). Daily MP deposition was estimated to range from 4.2 to 5.1 MPs/m2/d across UPs and 29.9-457.6 MPs/m2/d across ROs. The polymer types at ROs were dominated by rubber (80%) from TWPs, followed by 15% polyamide (PA) and 5% polysulfone (PES), while in UPs the proportion of PES (44%) was higher than PA (22%) and polyacrylonitrile (11%). The mean mass magnetic susceptibility, a proxy of the bioaccumulation of traffic-related metallic particles, was higher at ROs (0.62 ± 0.01 10-8 m3/kg) than at UPs (-0.50 ± 0.03 10-8 m3/kg). The content of PTEs was similar across sites, except for significantly higher concentrations of Sb, a tracer of vehicle brake wear, at ROs (0.308 ± 0.008 µg/g) compared with UPs (0.054 ± 0.006 µg/g). Our results suggest that the waxy leaflets and easy determination of surface area make Robinia an effective biomonitor for airborne MPs including TWPs.
Collapse
Affiliation(s)
- Mehriban Jafarova
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.J.); (L.G.); (L.A.D.L.); (S.L.)
| | - Lisa Grifoni
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.J.); (L.G.); (L.A.D.L.); (S.L.)
- Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy; (A.W.); (L.S.)
| | - Monia Renzi
- Department of Life Science, University of Trieste, Via L. Giorgieri, 10, 34127 Trieste, Italy;
| | - Tecla Bentivoglio
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015 Orbetello, Italy; (T.B.); (S.A.)
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015 Orbetello, Italy; (T.B.); (S.A.)
| | - Aldo Winkler
- Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy; (A.W.); (L.S.)
| | - Luigi Antonello Di Lella
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.J.); (L.G.); (L.A.D.L.); (S.L.)
| | - Lilla Spagnuolo
- Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy; (A.W.); (L.S.)
| | - Julian Aherne
- School of Environment, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.J.); (L.G.); (L.A.D.L.); (S.L.)
| |
Collapse
|