1
|
Kotia N, Sinha R, Aliko V, Faggio C. Benzophenone-3: A systematic review on aquatic toxicity, pollution status, environmental risk assessment, and treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 985:179740. [PMID: 40435725 DOI: 10.1016/j.scitotenv.2025.179740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/27/2025] [Accepted: 05/21/2025] [Indexed: 06/19/2025]
Abstract
Benzophenone-3 (BP-3) is a widely employed UV filter and forms the composition of sunscreens and various personal care products. It enters the water through human recreational activities and through ineffective degradation in conventional wastewater treatment plants. Due to its global detection, low water solubility, diminished biodegradability, elevated sorption potential, potential bioaccumulation, and endocrine-disrupting effects, it has been categorized as an emerging pollutant. The detection of BP-3 and its metabolites in various aquatic organisms globally has raised concerns about potential repercussions in the food chain. Environmental risk assessments revealed hazard quotient (HQ) values between 0.04 and 12.0 for freshwater habitats, indicating significant risks. The predicted no-effect concentrations (PNECs) ranged from 0.0139 to 19.1 μg/L, indicating varied risk levels and necessitating further refinement. Monitoring sewage plants using different treatment methods concluded the addition of metabolites and degradation by-products with added negative impact and other limitations. Assessment of advanced oxidation process of BP-3 removal strategies displayed reduced by-product toxicity and better removal rates using sonochemical decomposition (98 %), potassium permanganate treatment (91.3 %), and cobalt ferrite-activated persulfate oxidation technology (91 %). Despite this, these showed implementation hindrances, large-scalability issues, and lower degradation efficiencies at real matrices. Recent developments highlight feasible techniques such as phytoremediation, microalgae-assisted mitigation, and microbial degradation with improved removal rates and minimized by-product toxicity. Present review systematically examines the contamination level of BP-3 and its ecotoxicological impact on aquatic ecosystems, elucidating the intrinsic mechanism of action and identifying current knowledge deficiencies.
Collapse
Affiliation(s)
- Naveeta Kotia
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, India, 176206, India
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, India, 176206, India.
| | - Valbona Aliko
- Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
2
|
Riaz M, Abdullah S, Jamil M, Rasheed A, Sheikh U, Fatima M, Umer N, Aslam K. Evaluation of toxic effects of benzophenone on histopathology of Labeo rohita. Toxicol Rep 2025; 14:101914. [PMID: 39897405 PMCID: PMC11787587 DOI: 10.1016/j.toxrep.2025.101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Benzophenone (BP) is an organic ultraviolet (UV) filter widely used in sunscreens and personal care products. This compound enters aquatic ecosystems due to industrialization, wastewater treatment plants (WWTPs), and domestic effluents, poses serious threats to aquatic organisms, and is considered an emerging pollutant. This laboratory-based study assessed the 96-hour (h) median lethal concentrations (LC50) and sub-lethal effects of BP on the histology of the gills and muscles of Labeo rohita. Fish fingerlings of the same weight (48 ± 2 g) and length (5 ± 2 in.) were exposed to gradually increasing concentrations of BP (100 µg/L to 1000 µg/L) and their 96-h LC50 was determined as 612.822 ± 37.38 µg/L. To determine the sub-lethal effects, the fish were exposed to 1/5th of the 96-h LC50 of BP for 35 days (d) to investigate organ-specific responses. The results indicated significant damage to the exposed organs and showed damage in pillar cells and intraluminal debris in gill mucous cells. Moreover, fragmentation of intact muscle structures, intraluminal debris, and vascular necrosis were observed in exposed muscles. In conclusion, these results confirmed the histopathological changes in the gills and muscles of L. rohita caused by BP exposure, thereby confirming its risk to aquatic life.
Collapse
|
3
|
Hodge AA, Hopkins FE, Saha M, Jha AN. Ecotoxicological effects of sunscreen derived organic and inorganic UV filters on marine organisms: A critical review. MARINE POLLUTION BULLETIN 2025; 213:117627. [PMID: 39938199 DOI: 10.1016/j.marpolbul.2025.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
Sunscreens are topical personal care products that provide protection against the sun's ultraviolet A (UVA) and ultraviolet B (UVB) radiation. Ultraviolet (UV) filters are compounds added to sunscreens to block, absorb, or reflect the sun's UV rays, but are of major emerging concern due to their widespread use and global distribution. They pose a significant risk to marine organisms owing to their chemical properties, including high lipophilicity which increases their bioavailability. The present review identifies and summarises the factors that contribute to UV filter pollution, their sources, pathways, and effects on marine organisms. We identify and evaluate the current knowledge base and gaps pertaining to their effects. Here, we retrieved 111 peer-reviewed articles from four academic search engines between January and October 2024 with the topic search relating to UV filters, sunscreen and ecotoxicology. Most publications (60 %) focused on the biological effects of organic UV filters, with oxybenzone (benzophenone-3) being the most studied (57 %). Fewer publications assessed the biological effects of inorganic UV filters (40 %). Throughout all search results, the most commonly tested species were in the class of bivalvia (24 %) and oxidative stress based assays were the most popular (organic studies 40 %, inorganic studies, 39 %). To enhance understanding, future research should explore a broader range of organisms and life stages, considering dietary uptake and realistic environmental conditions, including the use of UV lighting in laboratory settings.
Collapse
Affiliation(s)
- Anneliese A Hodge
- University of Plymouth, School of Biological & Marine Sciences, Drake Circus, Plymouth, Devon, United Kingdom, PL4 8AA; Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, United Kingdom, PL1 3DH.
| | - Frances E Hopkins
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, United Kingdom, PL1 3DH.
| | - Mahasweta Saha
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, United Kingdom, PL1 3DH.
| | - Awadhesh N Jha
- University of Plymouth, School of Biological & Marine Sciences, Drake Circus, Plymouth, Devon, United Kingdom, PL4 8AA.
| |
Collapse
|
4
|
Tian L, Wu Y, Jia Y, Guo M. Understanding of Benzophenone UV Absorber-Induced Damage and Apoptosis in Human Hepatoma Cells. Int J Mol Sci 2025; 26:2990. [PMID: 40243607 PMCID: PMC11988835 DOI: 10.3390/ijms26072990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Benzophenone UV absorbers (BPs), a widely used family of organic UV absorbers (UVAs), have attracted considerable attention for their effects on organisms in recent years. Previous research has been unable to illuminate the intricate situation of BP pollution. To address this knowledge gap, we devised a BAPG-chain model that surpasses existing approaches based on biochemical detection, antioxidant defense systems, proteins, and genes to investigate the biological mechanisms of benzophenone-1 (BP-1) and benzophenone-3 (BP-3) within human hepatoma SMMC-7721 cells as model organisms. The BAPG-chain model links the cellular model, molecular level, macroscopic scale, and microscopic phenomena by adopting a global assessment mindset. Our findings indicate that BPs induce apoptosis via the excessive production of reactive oxygen species (ROS), mitochondrial and nuclear damage, and disruption of the antioxidant stress system. Notably, BPs induce apoptosis via alterations in the expression of genes and proteins associated with apoptosis in the mitochondria. Our experimental evidence sheds light on the biological effects of BPs and highlights the need for further research in this area.
Collapse
Affiliation(s)
| | | | - Yankun Jia
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (L.T.); (Y.W.)
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China; (L.T.); (Y.W.)
| |
Collapse
|
5
|
Grant GJ, Lim HW, Mohammad TF. A review of ultraviolet filters and their impact on aquatic environments. Photochem Photobiol Sci 2025; 24:343-356. [PMID: 39704908 DOI: 10.1007/s43630-024-00674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Numerous anthropogenic ultraviolet filters (UVF) have been detected in aquatic environments and concerns have arisen regarding their potential impacts on aquatic organisms. This manuscript reviews the environmental concentrations and potential toxicity of various UVF. The highest concentrations of UVF are typically observed near frequently visited recreational areas and during peak water-activity periods, which suggests that sunscreen application correlates with noticeable alterations in UVF concentrations. Aquatic concentrations of certain filters have sporadically exceeded 10 μg/L, although most measurements remain below 1 µg/L, which is below commonly reported toxicity levels. UVF have also been detected in aquatic organisms, typically ranging from nondetectable levels to a few hundred ng/g, depending on the species. The toxic effects from UVF, such as coral bleaching and diminished growth, have been observed in laboratory settings, however, toxicity tends to manifest only at significantly higher levels than what is typically detected in aquatic environments. Further research is imperative to provide consumers with improved guidance on selecting sunscreen containing UVF that poses the least environmental risk.
Collapse
Affiliation(s)
- Garett J Grant
- Department of Internal Medicine, Transitional Year Residency Program, Henry Ford Hospital, Detroit, MI, USA
- Morehead Family Medicine Residency Program, University of Kentucky, Lexington, KY, USA
| | - Henry W Lim
- Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
| | - Tasneem F Mohammad
- Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, MI, USA.
- Department of Dermatology, Henry Ford Medical Center, New Center One, 3031 W. Grand Boulevard, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
6
|
Zhang Y, Chang F, Junaid M, Ju H, Qin Y, Yin L, Liu J, Zhang J, Diao X. Distribution, sources, ecological and human health risks of organic ultraviolet filters in coastal waters and beach deposits in Hainan, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124610. [PMID: 39053805 DOI: 10.1016/j.envpol.2024.124610] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Organic ultraviolet filters (OUVFs) are extensively incorporated into both cosmetic items and industrial products and have been commonly found in water ecosystems. This study aims to examine the environmental levels, sources, ecological and human health risks of 14 commonly used OUVFs both in coastal water and beach deposit samples collected from the nearshore regions of Hainan Island and the South China Sea. This is first study highlighting the contamination of OUVFs in Hainan Island and utilizing economic and tourism data to confirm the potential source of OUVF pollution in costal aquatic and coastal ecosystem. Along the coastal tourist regions of Hainan Island, the median concentrations in coastal waters and beach deposits of these OUVFs fall within the range from 1.2 to 53.2 ng/L and 0.2-17.0 ng/g dw, respectively. In coastal water and beach deposit, the concentration of BP-3 was the highest, with median concentrations of 53.2 ng/L and 17.0 ng/g dw, respectively. Regarding human health risks, the daily intake of all 14 OUVFs through swimming was found to be 40-48 ng/kg/day. Ecological risk assessment indicates that BP-3 presents a medium risk for marine microalgae with a concurrent low risk for corals. The correlation analysis underscores a substantial interrelation of OUVFs in both coastal waters and beach deposits with various economic indicators, including annual rainfall, overnight tourists, total hotel rooms (unit), room occupancy rate, and sewage treatment capacity.
Collapse
Affiliation(s)
- Yankun Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Fengtong Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Hanye Ju
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Yongqiang Qin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Lianzheng Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jin Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Xiaoping Diao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Medeiros da Silva F, Pena Modesto R, Cávoli Lira MC, Libanio Reis Santos E, Oliveira-Lima JD. Effects of benzophenone-3 on the liver and thyroid of adult zebrafish. Xenobiotica 2024; 54:840-846. [PMID: 39535153 DOI: 10.1080/00498254.2024.2429724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Benzophenone-3 (BP-3), commonly known as oxybenzone, is an organic compound that acts as a sunscreen, protecting the skin from UVA and UVB rays. Thus, the objective of this study was to investigate the effects of BP-3 on the liver and thyroid using morphological and biochemical approaches.Adult male zebrafish were randomly assigned to three groups, each with three repetitions (n = 10 per group) water control, solvent control (0.01% ethanol), and 1 μg/L of BP-3, using a static exposure system for 96 h. After the experiment, histopathological analyses of the liver and thyroid were performed, along with histochemical analyses (glycogen) and biochemical evaluations of the antioxidant enzymes superoxide dismutase (SOD) and Catalase (CAT).Exposure to BP-3 resulted in significant histopathological changes in the liver of Danio rerio, increasing the frequency of circulatory disturbances, progressive changes, inflammatory responses, and regressive changes. On the other hand, the thyroid gland did not show any morphological changes during exposure to BP-3, maintaining its typical structure with follicles. There was a significant increase in SOD activity, while CAT showed no changes after 96 h of exposure.The results obtained demonstrate that exposure to BP-3 causes significant morphophysiological changes in the liver of D. rerio, highlighting not only the negative impacts on the health of these organisms but also the ecotoxicological potential of the substance and its consequences for aquatic biota in contaminated environments.
Collapse
Affiliation(s)
| | - Renan Pena Modesto
- Faculty of Medicine of Universidade de Gurupi (UnirG), Rua Pará, Paraíso do Tocantins, Tocantins, Brazil
| | | | - Eduardo Libanio Reis Santos
- Department of General and Applied Biology, Institute of Biosciences of Universidade Estadual Paulista 'Júlio de Mesquita Filho' (Unesp), São Paulo, Brazil
| | - Jeffesson de Oliveira-Lima
- Faculty of Medicine of Universidade de Gurupi (UnirG), Rua Pará, Paraíso do Tocantins, Tocantins, Brazil
| |
Collapse
|
8
|
Lin YJ, Li HM, Gao YR, Wu PF, Cheng B, Yu CL, Sheng YX, Xu HM. Environmentally relevant concentrations of benzophenones exposure disrupt intestinal homeostasis, impair the intestinal barrier, and induce inflammation in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123948. [PMID: 38614423 DOI: 10.1016/j.envpol.2024.123948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The aim of this study is to investigate the adverse effects of benzophenones (BPs) on the intestinal tract of mice and the potential mechanism. F1-generation ICR mice were exposed to BPs (benzophenone-1, benzophenone-2, and benzophenone-3) by breastfeeding from birth until weaning, and by drinking water after weaning until maturity. The offspring mice were executed on postnatal day 56, then their distal colons were sampled. AB-PAS staining, HE staining, immunofluorescence, Transmission Electron Microscope, immunohistochemistry, Western Blot and RT-qPCR were used to study the effects of BPs exposure on the colonic tissues of offspring mice. The results showed that colonic microvilli appeared significantly deficient in the high-dose group, and the expression of tight junction markers Zo-1 and Occludin was significantly down-regulated and the number of goblet cells and secretions were reduced in all dose groups, and the expression of secretory cell markers MUC2 and KI67 were decreased, as well as the expression of intestinal stem cell markers Lgr5 and Bmi1, suggesting that BPs exposure caused disruption of intestinal barrier and imbalance in the composition of the intestinal stem cell pool. Besides, the expression of cellular inflammatory factors such as macrophage marker F4/80 and tumor necrosis factor TNF-α was elevated in the colonic tissues of all dose groups, and the inflammatory infiltration was observed, which means the exposure of BPs caused inflammatory effects in the intestinal tract of F1-generation mice. In addition, the contents of Notch/Wnt signaling pathway-related genes, such as Dll-4, Notch1, Hes1, Ctnnb1and Sfrp2 were significantly decreased in each high-dose group (P < 0.05), suggesting that BPs may inhibit the regulation of Notch/Wnt signaling pathway. In conclusion, exposure to BPs was able to imbalance colonic homeostasis, disrupt the intestinal barrier, and trigger inflammation in the offspring mice, which might be realized through interfering with the Notch/Wnt signaling pathway.
Collapse
Affiliation(s)
- Yu-Jia Lin
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Rong Gao
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ping-Fan Wu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Bin Cheng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chen-Long Yu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yu-Xin Sheng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
9
|
Doust SN, Haghshenas SA, Bishop EE, Risk MJ, Downs CA. Fine-scale geographic risk assessment of oxybenzone sunscreen pollution within Hanauma Bay using hydrodynamic characterization and modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167614. [PMID: 37804976 DOI: 10.1016/j.scitotenv.2023.167614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Hanauma Bay's coral reef system is threatened by sunscreen pollution. Understanding the hydrodynamic nature of the bay is crucial for understanding the transport and fate of pollutants within the bay. This study conducted a comprehensive hydrodynamic analysis, revealing significant aspects of current patterns and their influence on sunscreen pollutant behavior. The analysis demonstrated the formation of flows that drive currents parallel to the shoreline, resulting in increased pollutant retention time over sensitive reef areas. Direct flushing currents were identified as playing a role in reducing pollution buildup. Particle dynamics analysis highlighted the importance of considering temporal dynamics and their implications for pollutant pathways, particularly through the swash zone during high tide phases. The study identified primary current patterns near the reef area and emphasized the circular behavior within the water body, affecting corals' susceptibility to bleaching in the southwestern part of Hanauma bay. To understand where oxybenzone concentrations were a threat to wildlife, we created a geographic model that integrated ecological risk assessment with hydrodynamic behavior in a given system, which we designate the Risk Quotient Plume - the geographic area where the concentration is above the threat level for a chemical. The study found high oxybenzone concentrations throughout the bay, threatening coral, fish, and algae populations. Oxybenzone's distribution indicated a serious threat to the entire back reef habitat and a hinderance to coral restoration efforts. The study also emphasizes the need to consider the hydrodynamic behavior of pollutants and their interaction with microplastics in the bay. Overall, the findings provide insights into hydrodynamics and pollutant dispersion in Hanauma Bay, supporting effective pollution management and conservation strategies.
Collapse
Affiliation(s)
- Shadan Nasseri Doust
- Institute of Geophysics, University of Tehran, North Kargar Ave., Tehran 1439951113, Islamic Republic of Iran
| | - S Abbas Haghshenas
- Institute of Geophysics, University of Tehran, North Kargar Ave., Tehran 1439951113, Islamic Republic of Iran.
| | - Elizabeth E Bishop
- Friends of Hanauma Bay, P.O. Box 25761, Honolulu, HI 96825-07610, United States of America
| | - Michael J Risk
- School of Geography and Geology, McMaster University, N0G 1R0, Canada
| | - C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, United States of America.
| |
Collapse
|