1
|
Zhao Z, Gao B, Li G, Yang H, Guo J, Zheng L, Huang F, Yu Z, Yu C, Zhang J, Cai M. Mitigating the vertical migration and leaching risks of antibiotic resistance genes through insect fertilizer application. ENVIRONMENTAL RESEARCH 2025; 276:121389. [PMID: 40086570 DOI: 10.1016/j.envres.2025.121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
The leaching and vertical migration risks of antibiotic resistance genes (ARGs) from fertilized soil to groundwater poses a significant threat to ecological and public safety. Insect fertilizer, particularly black soldier fly organic fertilizer (BOF), renowned for its minimal antibiotic resistance, emerge as a promising alternative for sustainable agricultural fertilization. This study employs soil-column leaching experiments to evaluate the impact of BOF on the leaching behavior of ARGs. Our results reveal that BOF significantly reduces the leaching risks of ARGs by 22.1 %-49.3 % compared to control organic fertilizer (COF). Moreover, BOF promotes the leaching of beneficial Bacillus and, according to random forest analysis, is the most important factor in predicting ARG profiles (3.02 % increase in the MSE). Further network analysis and mantel tests suggest that enhanced nitrogen metabolism in BOF leachates could foster Bacillus biofilm formation, thereby countering antibiotic-resistant bacteria (ARB) and mitigating antibiotic resistance. In addition, linear regression analysis revealed that Bacillus biofilm-associated genes pgaD (biofilm PGA synthesis protein), slrR (biofilm formation regulator), and kpsC (capsular polysaccharide export protein) were identified as pivotal in the elimination of ARGs, which can serve as effective indicators for assessing antibiotic resistance in groundwater. Collectively, this study demonstrates that BOF as an environmentally friendly fertilizer could markedly reduce the vertical migration risks of ARGs and proposes Bacillus biofilm formation related genes as reliable indicators for monitoring antibiotic resistance in groundwater.
Collapse
Affiliation(s)
- Zhengzheng Zhao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, PR China
| | - Bingqi Gao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, PR China
| | - Gen Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, PR China
| | - Huanhuan Yang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, PR China
| | - Jiasheng Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, PR China
| | - Longyu Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, PR China
| | - Feng Huang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, PR China
| | - Ziniu Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, PR China
| | - Chan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jibin Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, PR China
| | - Minmin Cai
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
2
|
Qin S, Chen W, Lin Y, Tan S, Liang S, Liu H, Zhang Q. Effect of hydraulic retention time on the nitrogen removal performance of pure biofilm rotating biological contactor system inoculated with heterotrophic nitrification-aerobic denitrification bacteria and its corresponding mechanism. BIORESOURCE TECHNOLOGY 2025; 427:132428. [PMID: 40120989 DOI: 10.1016/j.biortech.2025.132428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
The traditional activated sludge biofilm system struggles with poor removal performance and long hydraulic retention time (HRT) in treating high ammonia nitrogen (NH4+-N) wastewater. To solve these problems, this study introduced a pure heterotrophic nitrification-aerobic denitrification (HN-AD) biofilm system which HN-AD bacteria were inoculated in the rotating biological contactor (PH-RBC), with free microorganisms discharged after biofilm formation. Under short HRT (12 h), PH-RBC exhibited 29.23 % and 31.03 % higher NH4+-N and total nitrogen (TN) removal than pure activated sludge biofilm RBC (PS-RBC) (the influent NH4+-N was 505 ± 45 mg/L). Flavobacterium and Azoarcus were crucial for nitrogen removal in the PH-RBC. Metabolic analysis revealed that genes CS and IDH3 are crucial for carbon metabolism, with dissimilatory nitrate reduction dominates nitrogen metabolism. Bugbase prediction indicated that decreasing HRT increased the presence of Potentially Pathogenic. This study provides a theoretical basis for using pure biofilm system in high NH4+-N wastewater treatment.
Collapse
Affiliation(s)
- Shumin Qin
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Wang Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yan Lin
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Senwen Tan
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Siyu Liang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Huan Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Qian Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
3
|
Yao J, Zhou Y, Jin D, Sun J, Li W, Chen J. Unveiling the mechanism of microbial nitrogen conversion by acclimating bioanode potential for enhancing ammonia removal and reducing N 2O emission. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137554. [PMID: 39938367 DOI: 10.1016/j.jhazmat.2025.137554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
The biodegradation mechanism of enhancing ammonia removal and reducing N2O emission by acclimating bioanode potential in bioelectrochemical systems (BES) was studied in this work. The BES was started up and optimized with different parameters (i.e., aeration volume, external resistance, and pH value). The cyclic voltammetry was then performed to determine the potential range for acclimating bioanode, suggesting that potentials of -0.3, -0.1, 0.1, 0.2, and 0.3 V were suitable for acclimation. The experimental results indicated that optimum total nitrogen removal was achieved at potential of 0.1 V with a removal efficiency of 83.7 %, which was 1.6 times higher than that of the control group, while the corresponding N2O emission of 1.3 mg-N/L was detected which reduced 2.8 times. The microbial community analysis indicated that the dominant genera for enhancing nitrogen conversion were Sphaerocheata, Petrimonas, and Lentimicrobium. The electrochemical tests suggested that potential acclimation could simultaneously enhance direct electron transfer and mediated electron transfer (MET), thereby increasing extracellular electron transfer, in which the proportion of MET process mediated by riboflavin played a decisive role. Meanwhile, the intracellular electron transfer process was also strengthened by the increase of the related enzyme activity and the corresponding electron transport system activity increased 3.4 times. Additionally, nitrogen conversion pathways were proposed, indicating that potential acclimation could regulate the ammonia degradation pathway, and reduce the intermediates accumulation. These findings provide new understanding of the nitrogen conversion mechanisms in BES for ammonia removal by acclimating bioanode potential.
Collapse
Affiliation(s)
- Jiachao Yao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuxin Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Danjun Jin
- Zhejiang Zone-King Environmental Sci&Tech Co. Ltd., Hangzhou 310064, China
| | - Jiamo Sun
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Weidong Li
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
4
|
Liu Y, Qi S, Xu L, Su J, Bai Y, Zhang Q, Zhang H. Using sludge biochar@waste pellet ore@kelp extract to enhance Feammox and removal of heavy metals: Performance evaluation and possible metabolic mechanisms. BIORESOURCE TECHNOLOGY 2025; 432:132678. [PMID: 40374063 DOI: 10.1016/j.biortech.2025.132678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
The co-occurrence of nitrogen (N) and heavy metals (HMs) in industrial wastewater has emerged as a critical environmental challenge. Feammox-mediated N removal remains constrained by limited iron (Fe(III)) bioavailability and microbial susceptibility to HMs toxicity. This study developed a multifunctional composite through strategic integration of sludge-based biochar (SBC), pellet ore (PO), and kelp extract (KE) to overcome these limitations. The optimized bioreactor configuration, leveraging synergistic interactions among three distinct waste-derived resources, achieved exceptional removal efficiencies of 90.1, 96.4, and 93.4% for NH4+, NO3-, and COD, respectively. Immobilization mechanisms of HMs involved bio-Fe precipitate adsorption and Fe-EPS-HMs chelation. Microbial community analysis demonstrated selective enrichment of Fe-cycling genera (Geothrix, Zoogloea, and Aquabacterium) and metal-resistant species (Cloacibacterium, Paenibacillus). These advancements establish a sustainable paradigm for industrial wastewater management, while simultaneously addressing critical challenges of resource recovery and waste valorization within circular economy frameworks.
Collapse
Affiliation(s)
- Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shangzhe Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qinyucan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
5
|
Fan C, Hou D, Zhang L, Li C, Chen L, Zhang P, Wu Y, Zou J. Bioaugmentation using HN-AD consortia for high salinity wastewater treatment: Synergistic effects of halotolerant bacteria and nitrogen removal bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125355. [PMID: 40233618 DOI: 10.1016/j.jenvman.2025.125355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Bioaugmentation shows promise in enhancing nitrogen removal efficiency of high-salt wastewater, yet the impact of microbial associations on ecosystem function and community stability remains unclear. This study innovatively introduced a novel heterotrophic nitrification-aerobic denitrification bacterial consortium to improve the performance of SBR reactor for removing nitrogen from saline wastewater. The results revealed that the bioaugmented reactor (R2) exhibited superior removal performance, achieving maximum removal efficiencies of 87.8 % for COD and 97.8 % for NH4+-N. Moreover, proper salinity (2 % and 4 %) promoted the secretion of EPS and ectoine, further enhancing the resistance and stability of bacterial consortia. 16S rRNA gene sequencing and metagenomics analysis revealed the key denitrifying bacteria Pseudomonas and salt-tolerant bacteria Halomonas were successfully coexistence and the relative abundances of crucial genes (napB, nirS, norB, norC and nosZ) were increased obviously, which were benefit for the excellent nitrogen removal performance in R2. These findings elucidate microbial interactions in response to salinity in bioaugmentation, providing a valuable reference for the efficient treatment of high-saline wastewater.
Collapse
Affiliation(s)
- Chenchen Fan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Dongmei Hou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China.
| | - Lan Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Chuncheng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Lutong Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Pei Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China
| | - Yunjie Wu
- China Metallurgical Geology Southwest Co., Ltd., Kunming Geological Exploration Institute of China Metallurgical Geology Administration, No. 702 Longquan Road, Kunming, 650200, P.R. China
| | - Jianping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P.R. China.
| |
Collapse
|
6
|
Feng J, Cao M, Wang Y, Xu L, Bai Y, Cheng W, Su J. Simultaneous removal of ammonia, cadmium, and oxytetracycline via a double-layer immobilized bioreactor driven by manganese redox: Optimization and potential mechanism. BIORESOURCE TECHNOLOGY 2025; 421:132150. [PMID: 39921008 DOI: 10.1016/j.biortech.2025.132150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
The coexistence of ammonia nitrogen (NH4+-N), heavy metals and antibiotics in composite polluted wastewater has garnered significant attention. This study developed a novel double-layer biological carrier using sodium alginate, diatomite, polyvinyl alcohol, manganese-modified biochar, and pyrolusite, loaded with strains YZ8 and MA23 to form an efficient bioreactor (M1). Under conditions of a hydraulic retention time of 24 h, the carbon to nitrogen ratio and pH were 1.5 and 6.5, M1 achieved an average NH4+-N removal efficiency of 99 %. Additionally, the average removal efficiencies of cadmium and oxytetracycline by M1 through biosorption, co-precipitation and Mn(Ⅲ) oxidation reached 90 % and 85 %, respectively. High-throughput results indicated that M1 had a relatively high abundance of functional bacterial genera. Comparative KEGG analysis revealed that M1 promoted the expression of functional genes involved in N cycling and Mn transformation. This study offers new perspectives on tackling the issue of composite water environmental pollution.
Collapse
Affiliation(s)
- Jingting Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China
| | - Meng Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China
| | - Wenjing Cheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China.
| |
Collapse
|
7
|
Sarkar A, Bhattacharjee S. Biofilm-mediated bioremediation of xenobiotics and heavy metals: a comprehensive review of microbial ecology, molecular mechanisms, and emerging biotechnological applications. 3 Biotech 2025; 15:78. [PMID: 40060289 PMCID: PMC11889332 DOI: 10.1007/s13205-025-04252-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/20/2025] [Indexed: 04/13/2025] Open
Abstract
Environmental pollution, driven by rapid industrialization and urbanization, has emerged as a critical global challenge in the twenty-first century. This comprehensive review explores the potential of bacterial biofilms in bioremediation, focusing on their ability to degrade and transform a wide array of pollutants, including heavy metals, persistent organic pollutants (POPs), oil spills, pesticides, and emerging contaminants, such as pharmaceuticals and microplastics. The unique structural and functional characteristics of biofilms, including their extracellular polymeric substance (EPS) matrix, enhanced genetic exchange, and metabolic cooperation, contribute to their superior pollutant degradation capabilities compared to planktonic bacteria. Recent advancements in biofilm-mediated bioremediation include the application of genetically engineered microorganisms, nanoparticle-biofilm interactions, and innovative biofilm reactor designs. The CRISPR-Cas9 system has shown promise in enhancing the degradative capabilities of biofilm-forming bacteria while integrating nanoparticles with bacterial biofilms demonstrates significant improvements in pollutant degradation efficiency. As global pollution rises, biofilm-based bioremediation emerges as a cost-effective and environmentally friendly approach to address diverse contaminants. This review signifies the need for further research to optimize these techniques and harness their full potential in addressing pressing environmental challenges.
Collapse
Affiliation(s)
- Argajit Sarkar
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Agartala, Tripura 799022 India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Agartala, Tripura 799022 India
| |
Collapse
|
8
|
Wang L, Zhou J, Xiong J, Hu T, Xia Q. Denitrification efficiency and biofilm community succession in a bidirectional alternating influent biofilter. ENVIRONMENTAL TECHNOLOGY 2025:1-15. [PMID: 40056461 DOI: 10.1080/09593330.2024.2448764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/21/2024] [Indexed: 03/10/2025]
Abstract
Biofilters are widely used for nitrogen removal in wastewater treatment. This study developed a bidirectional alternating-influent biofilter to reduce clogging and enhance nitrogen removal. Alternating influent utilized biofilm on the media as a denitrification carbon source. With initial ammonium, nitrate, and total nitrogen concentrations of 8.49±0.30, 12.52±0.20, and 19.89±0.79 mg/L, the forward influent achieved ammonium, nitrate, and total nitrogen removal efficiencies of 81.6%, 66.8%, and 71.2%, increasing by 13.3%, 3.0%, and 4.8% at the effluent. Reverse influent further boosted nitrate and total nitrogen removal by 14.0% and 5.5%. The natural DO gradient under conventional influent conditions was simulated, and the nitrogen removal mechanism and treatment effect, mainly nitrification and denitrification, were discussed. Microbial analysis showed that endogenous carbon in the biofilm, derived from decaying cells and EPS, reduced clogging risk. Significant changes in bacterial count, EPS content, and microbial abundance were observed across influent directions, with Proteobacteria, Bacteroidetes, and Pseudomonas increasing under reverse flow. These results indicate that bidirectional alternating influent can significantly improve nitrogen removal and reduce clogging, offering an effective optimization for wastewater treatment.
Collapse
Affiliation(s)
- Lifei Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Tuanping Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Qianhe Xia
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| |
Collapse
|
9
|
Tian Y, Chen W, Liu H, Su L, Yang S, Tian W, Zhang H, Zhang T, Niu J. Are adding carbon sources and activated sludge helpful to the full-scale packing-reinforced multistage biological contact oxidation process? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124461. [PMID: 39914207 DOI: 10.1016/j.jenvman.2025.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
The performance of wastewater treatment plants (WWTPs) is closely related to the structure and function of microbial communities which are frequently regulated by inoculating carbon source or new microbes. However, the status of microbial communities may be determined by the homeostasis of the bioreactors or properties of the influent especially in full-scale wastewater treatment plants. In this study, a full-scale packing-reinforced multistage biological contact oxidation process (PMBCOP) was used for investigating the durative impacts of carbon source addition and new sludge inoculation on the structure, stability and metabolic pathways of microbial communities. The results showed that inoculation of carbon sources or new sludge significantly increased the diversity (Chao1 and Shannon index) and reciprocal cooperations among microorganisms which further improved the stability of microbial communities and the COD (by 15%) and NH3-N (by 3%) removal efficiencies. Proteobacteria and Bacteroidota were two dominant phyla in the system and were responsible for the main metabolic pathway, i.e. amino acid metabolism. Nevertheless, the modifications of key genera, stability, up-regulated metabolites and enriched metabolic pathways as well as the improved removal efficiencies were not able to persist. The resistant ability of microbial community declined after stopping adding carbon source and new sludge which resulted in the instability and low removal efficiencies of the PMBCOP and aroused the requirements on exploring deep homeostatic mechanism of microbial communities and new promoting strategies. This study provided new insights on the durative effects on the succession and metabolism of microbial communities combing with the performances of the full-scale wastewater treatment plant which is helpful for the management of full-scale WWTPs.
Collapse
Affiliation(s)
- Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Wenjing Chen
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Hongwei Liu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei, 050011, China
| | - Liangfeng Su
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Shaoxia Yang
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Tian Zhang
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Junfeng Niu
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
10
|
Carluccio MD, Sabatino R, Borgomaneiro G, Cesare AD, Rizzo L. Bacterial community dynamics in a biofilm-based process after electro-assisted Fenton pre-treatment of real olive mill wastewater. BIORESOURCE TECHNOLOGY 2025; 419:132095. [PMID: 39828044 DOI: 10.1016/j.biortech.2025.132095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
In this work, the effect of the electro-assisted Fenton (EAF) process on the bacterial community of a moving bed biofilm reactor (MBBR) for olive mill wastewater (OMW) co-treatment with urban wastewater (UWW) was investigated. According to metagenomic analysis, pre-treatment by EAF, while removing total phenols (TPHs) up to 84 % ± 3 % and improving biodegradability of OMW from 0.38 to 0.62, led to the emergence of bacterial genera in the MBBR (R2) that were not detected under conditions without pre-treatment (R1). Indeed, in that condition, Candidatus Competibacter replaced Amaricoccus as dominant denitrifying bacteria. In both cases, the bacterial community composition matched with high simultaneous nitrification-denitrification efficiency (up to 98 %). Finally, Chlorobium (2.5-4.1 %), sulphate-reducing bacteria and Geobacter (up to 1.6 ± 0.4 %), anaerobic bacteria that utilise iron oxides, were observed exclusively with EAF application, suggesting potential for the development of new integrated microbial electrochemical systems.
Collapse
Affiliation(s)
- Marco De Carluccio
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922 Verbania, Italy
| | - Giulia Borgomaneiro
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922 Verbania, Italy
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922 Verbania, Italy
| | - Luigi Rizzo
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
11
|
Adyari B, Zhang L, Maravić A, Chen J, Li L, Gad M, Yu CP, Hu A. Urbanization enhances consumer protist-driven ARGs dissemination in riverine ecosystems. ENVIRONMENT INTERNATIONAL 2025; 195:109238. [PMID: 39729871 DOI: 10.1016/j.envint.2024.109238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/17/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024]
Abstract
Despite the emergence of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARBs), how biological inter-trophic interactions, modulated by watershed urbanization, shape the resistome remains unexplored. We collected water samples from the highly urbanized (western: 65 % built land, sewage-affected) and lesser-urbanized (northern: 25 % built land, drinking water source) downstream tributaries of the Jiulong River in southeast China over dry and wet seasons. We utilized metagenomic and amplicon (16S and 18S rDNA) sequencing to investigate the relationships among microeukaryotic algae, consumer protists, bacterial communities, and the resistome. Metagenomic results showed that ARG-MGE-carrying contigs (mobile ARGs), rather than ARG-carrying contigs (non-mobile ARGs), exhibited more pronounced discrepancies between tributaries. A higher total abundance of ARGs and a greater number of co-shared ARGs between pathogen and non-pathogen bacteria were observed in the more urbanized western tributary. Structural equation modeling revealed that consumer protist-bacteria and algae-bacteria cohesions predominantly influenced the resistome in the western and northern tributaries, respectively. Additionally, consumer protists had more significant associations (511 out of 634) with bacteria carrying mobile ARGs in western tributary, while algae had more significant associations (73 out of 105) in northern tributary. These results highlight the distinct inter-trophic driving factors of the resistome modulated by watershed urbanization.
Collapse
Affiliation(s)
- Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Jiaxin Chen
- Carbon Neutral Innovation Research Center, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Laiyi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mahmoud Gad
- Water Pollution Research Department, National Research Centre, Cairo 12622, Egypt
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Carbon Neutral Innovation Research Center, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
12
|
Gao D, Xu A, Zhou Q, Gong X, Liang H. New insights into biofilm formation and microbial communities in hybrid constructed wetlands with functional substrates for treating contaminated surface water. BIORESOURCE TECHNOLOGY 2025; 416:131741. [PMID: 39491739 DOI: 10.1016/j.biortech.2024.131741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
In this study, hybrid constructed wetlands (HCW) with functional substrates (vermiculite-tourmaline modified polyurethane) were constructed to investigate nitrogen removal efficiency and metabolic cooperation mechanisms for treating rural contaminated surface water with natural temperature fluctuations. The results show that within a natural temperature fluctuation range of 9-25 °C, the HCW achieved an average nitrate nitrogen removal efficiency of 98 % and a total nitrogen removal efficiency of 76 %, with effluent total nitrogen less than 5 mg/L. The rational secretion of extracellular polymeric substance and the analysis of microbial community structure revealed that functional substrate favors biofilm formation, increases the activity of Candidatus_Brocadia and Thauera, and enhances ammonia and nitrate reduction. These findings elucidate the ecological patterns exhibited by microorganisms during the process of functional substrate intensification. Overall, this study offers valuable guidance for constructing HCW to treat contaminated surface water.
Collapse
Affiliation(s)
- Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Qixiang Zhou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
13
|
Zhang H, Wei C, Chen A, Ke X, Li Z, Qin Z, Tian Y, Wu H, Qiu G, Zhu S. re-aerobic treatment and dissolved oxygen regulation in full-scale aerobic-hydrolysis and denitrification-aerobic process for achieving simultaneous detoxification and nitrification of coking wastewater. BIORESOURCE TECHNOLOGY 2025; 416:131754. [PMID: 39510356 DOI: 10.1016/j.biortech.2024.131754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The biological treatment of coking wastewater is a challenge. The application of prepositioned aerobic process has rarely been systematically reported, among which the detoxification and nitrification performance of the prepositioned aerobic unit (O1) is worthy of investigation. Results indicate that O1 achieves stable simultaneous detoxification and nitrification by regulating the dissolved oxygen, effectively maintaining ammonification, nitrosation, and complete nitrification phases. Microbial community structure, metabolic pathways and functional genes showed different preferences at different phases. High dissolved oxygen concentrations (2.20-3.00 mg/L) benefited the enrichment of carbon and nitrogen related major metabolic pathways and functional genes. BOD5/CODCr ratio, dissolved oxygen and toxic pollutants together shaped microbial community structure and nitrogen transformation processes. Based on the principle of DO regulation, it could assemble a biotransformation compartment for nitrogen removal from complex wastewaters through a pollutant detoxification mechanism of rapid microbial proliferation,and provides a promising approach for toxic industrial wastewater.
Collapse
Affiliation(s)
- Heng Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| | - Acong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Xiong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; School of Environment, South China Normal University, Guangzhou, Guangdong, 510006, PR China
| | - Zhi Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Yuxin Tian
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
14
|
Yao B, Liu M, Zhang J, Hu X, Wang B, Liang RJ, Chen Y. Effect of long-term exposure to non-biodegradable and biodegradable microplastics in continuous anoxic/aerobic bioreactors: Nitrogen removal performance, microbial communities and functional gene responses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123712. [PMID: 39675334 DOI: 10.1016/j.jenvman.2024.123712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
The environmental hazards caused by microplastics (MPs) have received widespread attention, but the effects of non-biodegradable and biodegradable MPs of long-term presence on continuously operating sewage treatment bioreactors are not well known. In this study, we investigated the effect of a representative non-biodegradable MP, polyethylene terephthalate (PET), and a biodegradable MP, polylactic acid (PLA), on the nitrogen removal performance of conventional anoxic/aerobic (A/O) process. The NH4+-N removal efficiencies were suppressed to 91.7 ± 5.5% and 80.8 ± 4.1% at concentrations of 10 and 100 mg/L PLA, significantly (p < 0.05) lower than 96.3 ± 1.0% and 95.0 ± 1.5% with the presence of PET. PLA resulted in a significant (p < 0.05) decrease in adenosine triphosphate of living cells (cATP) and dehydrogenase activities. PLA enhanced redox stress and induced a series of oxidative stress reactions that were detrimental to the normal growth and metabolism of microorganisms. The relative abundance of several functional microorganisms (Nitrosomonas,Nitrospira and Ellin6067) and genes (amoA, amoB and amoC) associated with NH4+-N conversion were reduced. The potential risk of biodegradable MPs to the long-term wastewater treatment process cannot be ignored and needs to be emphasized.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang, 621900, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Bin Wang
- Sichuan Engineering Research Center for Municipal Wastewater Distributed Treatment Technology, Chengdu, 610200, China
| | - Ren-Jun Liang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang, 621900, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
15
|
Battulga B, Nakayama M, Matsuoka S, Kondo T, Atarashi-Andoh M, Koarashi J. Dynamics and functions of microbial communities in the plastisphere in temperate coastal environments. WATER RESEARCH 2024; 264:122207. [PMID: 39142044 DOI: 10.1016/j.watres.2024.122207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Microbial attachment and biofilm formation on microplastics (MPs <5 mm in size) in the environment have received growing attention. However, there is limited knowledge of microbial function and their effect on the properties and behavior of MPs in the environment. In this study, microbial communities in the plastisphere were explored to understand microbial ecology as well as their impact on aquatic ecosystems. Using the amplicon sequencing of 16S and internal transcribed spacer (ITS) genes, we uncovered the composition and diversity of bacterial and fungal communities in samples of MPs (fiber, film, foam, and fragment), surface water, bottom sediment, and coastal sand in two contrasting coastal areas of Japan. Differences in microbial diversity and taxonomic composition were detected depending on sample type (MPs, water, sediment, and sand) and the research site. Although relatively higher bacterial and fungal gene counts were determined in MP fragments and foams from the research sites, there were no significant differences in microbial community composition depending on the morphotypes of MPs. Given the colonization by hydrocarbon-degrading communities and the presence of pathogens on MPs, the complex processes of microbial taxa influence the characteristics of MP-associated biofilms, and thus, the properties of MPs. This study highlights the metabolic functions of microbes in MP-associated biofilms, which could be key to uncovering the true impact of plastic debris on the global ecosystem.
Collapse
Affiliation(s)
- Batdulam Battulga
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, 319-1195, Japan.
| | - Masataka Nakayama
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, 319-1195, Japan
| | - Shunsuke Matsuoka
- Field Science Education and Research Center, Kyoto University, Kyoto, 601-0703, Japan
| | - Toshiaki Kondo
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Mariko Atarashi-Andoh
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, 319-1195, Japan
| | - Jun Koarashi
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, 319-1195, Japan
| |
Collapse
|
16
|
Jia D, Wei S, Wang S. Meta-analysis revealed the factors affecting the functions of ecological floating bed in removing nitrogen and phosphorus from eutrophic water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59712-59726. [PMID: 39367218 DOI: 10.1007/s11356-024-35241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Ecological floating bed (EFB) has been widely used to remove nitrogen and phosphorus from eutrophic water. However, its effects on nitrogen and phosphorus removal are different in various studies. Presently it has not been systematically clear what factors produce effects on EFB removing nitrogen and phosphorus from eutrophic water. In this study, we performed a meta-analysis of 169 articles to discuss the effects of EFB characteristics and experimental conditions on EFB removing nitrogen and phosphorus. Results showed that EFB generally decreased nitrogen and phosphorus concentrations in eutrophic water regardless of EFB characteristics and experimental conditions. EFB showed better effects on simultaneously removing TN, NH4+-N, and TP when it had one of the characteristics: constructed by monocots, 2-3 plant species, an area of 1.1-3.0 m2, and the coverage of 21%-40%. However, NO3--N removal by EFB was complicated due to the effects of nitrification and denitrification. Moreover, EFB plant density also showed different effects on nitrogen and phosphorus removal. Experimental conditions produced evident effects on EFB removing nitrogen and phosphorus, and it showed better effects under one of the conditions: water temperature of 16-25℃, experimental duration of 31-60 days, long hydraulic retention time, and aeration. This study indicates that EFB can significantly remove nitrogen and phosphorus from eutrophic water, and it is an effective technology to control water eutrophication, but the effects of EFB characteristics and environmental conditions on EFB function should be considered in application.
Collapse
Affiliation(s)
- Deyi Jia
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuainan Wei
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuguang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
17
|
Peng J, Xiao R, Wu C, Zheng Z, Deng Y, Chen K, Xiang Y, Xu C, Zou L, Liao M, Zhang J. Characterization of the prevalence of Salmonella in different retail chicken supply modes using genome-wide and machine-learning analyses. Food Res Int 2024; 191:114654. [PMID: 39059904 DOI: 10.1016/j.foodres.2024.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
Salmonella is a foodborne pathogen that causes salmonellosis, of which retail chicken meat is a major source. However, the prevalence of Salmonella in different retail chicken supply modes and the threat posed to consumers remains unclear. The prevalence, serotype distribution, antibiotic resistance, and genomic characteristics of Salmonella in three supply modes of retail chicken (live poultry, frozen, and chilled) were investigated using whole-genome sequencing (WGS) and machine learning (ML). In this study, 480 retail chicken samples from live poultry, frozen, and chilled supply modes in Guangzhou from 2020 to 2021, as well as 253 Salmonella isolates (total isolation rate = 53.1 %), were collected. The prevalence of isolates in the live poultry mode (67.5 %, 81/120) was statistically higher than in the frozen (50.0 %, 120/240) and chilled (43.3 %, 52/120) (P < 0.05) modes. Serotype identification showed significant differences in the serotype distribution of Salmonella in different supply modes. S. Enteritis (46.7 %) and S. Indiana (14.2 %) were predominant in the frozen mode. S. Agona (23.5 %) and S. Saintpaul (13.6 %) were predominant in live poultry, while S. Enteritis (40.4 %) and S. Kentucky (17.3 %) were predominant in chilled mode. Antibiotic testing showed that frozen mode isolates were more resistant; the multidrug-resistant (MDR) rate of isolates in the frozen mode reached 91.8 %, significantly higher than in the chilled (86.5 %) and live (74.1 %) (P < 0.05) modes. WGS was performed on 155 top serotypes (S. Enteritidis, S. Kentucky, S. Indiana, and S. Agona). The antibiotic resistance gene analysis showed that the abundance and carrying rate of antibiotic resistance genes of Salmonella in the frozen mode (54 types, 16.1 %) were significantly higher than in other modes (live poultry: 36 types, 9.4 %, P < 0.05; chilled: 31 types, 11.6 %). The blaNDM-1 and blaNDM-9 genes encoding carbapenem resistance were found in frozen mode isolates on a complex transposon consisting of TnAS3-IS26. Virulence factors and plasmid replicons were abundant in the studied frozen mode isolates. In addition, single nucleotide polymorphism (SNP) phylogenetic tree results showed that in the frozen supply mode, the S. Enteritidis clonal clade continued to contaminate retail chicken meat and was homologous to S. Enteritidis strains found in farm chicken embryos, slaughterhouse chicken carcasses, and patients from hospitals in China (SNP 0 = 10). Notably, the pan-genome-based ML model showed that characteristic genes in frozen and live poultry isolates differed. The narZ gene was a key characteristic gene in frozen isolates, encoding nitrate reductase, relating to anaerobic bacterial growth. The ydgJ gene is a key characteristic gene in the live mode and encodes an oxidoreductase related to oxidative function in bacteria. The high prevalence of live poultry mode Salmonella and the transmission of frozen mode MDR Salmonella in this study pose serious risks to food safety and public health, emphasizing the importance of improving disinfection and cold storage measures to reduce Salmonella contamination and transmission. In conclusion, the continued surveillance of Salmonella across different supply models and the development of an epidemiological surveillance system based on WGS is necessary.
Collapse
Affiliation(s)
- Junhao Peng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Renhang Xiao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Canji Wu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Zheng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuhui Deng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuwei Xiang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, 611130 Yaan, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; School of Resources and Environmental, Zhongkai College of Agricultural Engineering, Guangxin Road No. 388, Baiyun District, Guangzhou 510550, Guangdong, China.
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control; Key Laboratory of Zoonoses, Ministry of Agriculture; Key Laboratory of Zoonoses Prevention and Control of Guangdong Province; Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Cao K, Huang X, Wang CD, Yu JH, Gui WJ, Zhang S. Refractory degradable dissolved organic matter (R-DOM) driving nitrogen removal by the electric field coupled iron‑carbon biofilter (E-ICBF): Performance and microbial mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173374. [PMID: 38795998 DOI: 10.1016/j.scitotenv.2024.173374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Researches on the advanced nitrogen (N) removal of municipal tailwater always overlooked the value of refractory degradable dissolved organic matter (R-DOM). In this study, a novel electric field coupled iron‑carbon biofilter (E-ICBF) was utilized to explore the performance and microbial changes with polyethylene glycol (PEG) as the representative R-DOM. Results demonstrated that the removal efficiencies of E-ICBF for nitrate nitrogen (NO3--N), ammonia nitrogen (NH4+-N), and total nitrogen (TN) improved by 28.76 %, 12.96 %, and 28.45 %, compared to quartz sand biofilter (SBF). Moreover, removal efficiencies of NO3--N and TN in E-ICBF with R-DOM went up by 12.11 % and 14.02 % compared to methanol. Additionally, both PEG and the electric field reduced the microbial richness and diversity. However, PEG promoted the increase of denitrifying bacteria abundance including unclassified_f_Comamonadaceae, Thauera, and unclassified_f_Gallionellaceae. The electric field improved the abundances of genes related to N removal (hao, nasC, nasA, nifH, nifD, nifK) and PEG further enhanced the effect. The abundances of key enzymes [EC:1.7.5.1], [EC:1.7.2.1], [EC:1.7.2.4], and [EC:1.7.2.5] decreased due to the addition of PEG and the electric field mitigated the negative influence. Additionally, the electric field changed relationships between microorganisms and pollutant removal, and improved interspecific relationships between denitrifying bacterial genera and other genera in E-ICBF.
Collapse
Affiliation(s)
- Kai Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Cheng-Da Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jiang-Hua Yu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wen-Jing Gui
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
19
|
Wang J, Ran B, Peng Y, An Q, Zhao B. Evaluation of aerobic granulation performance bioaugmented with the auto-aggregating bacterium Pseudomonas stutzeri strain XL-2 with heterotrophic nitrification-aerobic denitrification capacity. BIORESOURCE TECHNOLOGY 2024; 403:130869. [PMID: 38777236 DOI: 10.1016/j.biortech.2024.130869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
In this study, the possibility of an auto-aggregating bacterium Pseudomonas strain XL-2 with heterotrophic nitrification-aerobic denitrification capacity for improving granulation and nitrogen removal was evaluated. The results showed that the supplementation of strain XL-2 promoted granulation, making R1 (experimental group with strain XL-2) dominated by granules at 14 d, which was 12 days earlier than R2 (control group without strain XL-2). This was attributed to the promotion of extracellular polymeric substances (EPS) secretion, particularly proteins by adding strain XL-2, thereby improving the hydrophobicity of sludge and altering the proteins secondary structures to facilitate aggregation. Meanwhile, adding strain XL-2 improved simultaneous nitrification and denitrification efficiency of R1. Microbial community analysis indicated that strain XL-2 successfully proliferated in aerobic granule sludge and might induce the enrichment of genera such as Flavobacterium and Paracoccus that were favorable for EPS secretion and denitrification, jointly promoting granulation and enhancing nitrogen removal efficiency.
Collapse
Affiliation(s)
- Jinyi Wang
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Binbin Ran
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yongxue Peng
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang An
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Bin Zhao
- The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
20
|
Zhao Y, Zhang J, Chen Z, Wang Q. Bio-promoter mediated denitrification recovery from Cd(II) stress: Microbial activity resilience, electron behavior enhancement and microbial community evolution. BIORESOURCE TECHNOLOGY 2024; 402:130780. [PMID: 38703963 DOI: 10.1016/j.biortech.2024.130780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Denitrification is fragile to toxic substances, while currently there are few regulation strategies for toxic substance-stressed denitrification. This study proposed a combined bio-promoter composed of basic bio-promoter (cytokinin, biotin, L-cysteine, and flavin adenine dinucleotide) and phosphomolybdic acid (PMo12) to recover cadmium(II) (Cd(II)) stressed denitrification. By inhibiting 58.02% and 48.84% of nitrate reductase and nitrite reductase activities, Cd(II) caused all the influent nitrogen to accumulate as NO3--N and NO2--N. Combined bio-promoter shortened the recovery time by 21 cycles and improved nitrogen removal efficiency by 10% as the synergistic effect of basic bio-promoter and PMo12. Basic bio-promoter enhanced antioxidant enzyme activities for reactive oxygen species clearance and recovered 23.30% of nicotinamide adenine dinucleotide for sufficient electron donors. Meanwhile, PMo12 recovered electron carriers contents, increasing the electron transfer activity by 60.81% compared with self-recovery. Bio-promoters enhanced the abundance of denitrifiers Seminibacterium and Dechloromonas, which was positively correlated with rapid recovery of denitrification performance.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinshuang Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhihui Chen
- China Water Resources Bei Fang Investigation, Design & Research CO.LTD, China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
21
|
Yao J, Qi J, Sun J, Qian X, Chen J. Enhancement of nitrate reduction in microbial fuel cells by acclimating biocathode potential: Performance, microbial community, and mechanism. BIORESOURCE TECHNOLOGY 2024; 398:130522. [PMID: 38437965 DOI: 10.1016/j.biortech.2024.130522] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The enhancement of nitrate reduction in microbial fuel cells (MFCs) by acclimating biocathode potential was studied. An MFC system was started up, and measured by cyclic voltammetry to determine a suitable potential region for acclimating biocathode. The experimental results revealed that potential acclimation could efficiently improve denitrification performance by relieving the phenomenon of nitrite accumulation, and optimum performance was obtained at -0.4 V with a total nitrogen removal efficiency of 87.4 %. Subsequently, the characteristics of electron transfer behaviors were measured, suggesting that a positive correlation between nitrate reduction and the contribution of direct electron transfer emerged. Furthermore, a denitrification mechanism was proposed. The results indicated that potential acclimation was conducive to enhancing denitrifying enzyme activity and that the electron transport system activity could be increased by 5.8 times. This study provides insight into the electron transfer characteristics and denitrification mechanisms in MFCs for nitrate reduction at specific acclimatization potentials.
Collapse
Affiliation(s)
- Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiayi Qi
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiamo Sun
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaofei Qian
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 310015, China; Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
22
|
Rachbauer L, Granda CB, Shrestha S, Fuchs W, Gabauer W, Singer SW, Simmons BA, Urgun-Demirtas M. Energy and nutrient recovery from municipal and industrial waste and wastewater-a perspective. J Ind Microbiol Biotechnol 2024; 51:kuae040. [PMID: 39448370 PMCID: PMC11586630 DOI: 10.1093/jimb/kuae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2022] [Indexed: 10/26/2024]
Abstract
This publication highlights the latest advancements in the field of energy and nutrient recovery from organics rich municipal and industrial waste and wastewater. Energy and carbon rich waste streams are multifaceted, including municipal solid waste, industrial waste, agricultural by-products and residues, beached or residual seaweed biomass from post-harvest processing, and food waste, and are valuable resources to overcome current limitations with sustainable feedstock supply chains for biorefining approaches. The emphasis will be on the most recent scientific progress in the area, including the development of new and innovative technologies, such as microbial processes and the role of biofilms for the degradation of organic pollutants in wastewater, as well as the production of biofuels and value-added products from organic waste and wastewater streams. The carboxylate platform, which employs microbiomes to produce mixed carboxylic acids through methane-arrested anaerobic digestion, is the focus as a new conversion technology. Nutrient recycling from conventional waste streams such as wastewater and digestate, and the energetic valorization of such streams will also be discussed. The selected technologies significantly contribute to advanced waste and wastewater treatment and support the recovery and utilization of carboxylic acids as the basis to produce many useful and valuable products, including food and feed preservatives, human and animal health supplements, solvents, plasticizers, lubricants, and even biofuels such as sustainable aviation fuel. ONE-SENTENCE SUMMARY Multifaceted waste streams as the basis for resource recovery are essential to achieve environmental sustainability in a circular economy, and require the development of next-generation waste treatment technologies leveraging a highly adaptive mixed microbial community approach to produce new biochemicals, biomaterials, and biofuels from carbon-rich organic waste streams.
Collapse
Affiliation(s)
- Lydia Rachbauer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Shilva Shrestha
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Werner Fuchs
- Department for Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Wolfgang Gabauer
- Department for Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - Steven W Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Blake A Simmons
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint Bioenergy Institute, Emeryville, CA 94608, USA
| | | |
Collapse
|
23
|
Zhou Y, Celine Zhang Y, Hu X, Zhou Y, Bai Y, Xiang P, Zhang Z. Overlooked role in bacterial assembly of different-sized granules in same sequencing batch reactor: Insights into bacterial niche of nutrient removal. BIORESOURCE TECHNOLOGY 2024; 391:129992. [PMID: 37949147 DOI: 10.1016/j.biortech.2023.129992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
The unique ecosystem within different-sized granules affects microbial assembly, which is crucial for wastewater treatment performance. This study operated an aerobic granular sludge system to evaluate its performance in treating synthetic municipal wastewater. Subsequently, the microbial community within different-sized granules was characterized to investigate bacterial assembly, and elucidated their biological potential for nutrient removal. The nutrient removal efficiencies were as follows: 93.8 ± 2.8 % chemical oxygen demand, 65.4 ± 4.0 % total nitrogen, and 93.8 ± 6.8 % total phosphorus. The analysis of microbial assembly unveiled remarkable diversity among different-sized sludges, the genus relative abundance displayed 61.4 % positive and 33.0 % negative correlation with sludge size. The excellent potential for organic degradation, denitrification, and polyphosphate accumulation occurred in sludge sizes of > 0.75 mm, 0.20-0.50 mm, and < 0.20 mm, respectively. Functional annotation further confirmed the nutrient removal potential within different-sized sludges. This study provides valuable insights into the bacterial niche of different-sized sludges, which can enhance their practical application.
Collapse
Affiliation(s)
- Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | | | - Xueli Hu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuanhang Zhou
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ping Xiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|