1
|
Yang H, Liu L, Shu Z, Zhang W, Huang C, Zhu Y, Li S, Wang W, Li G, Zhang Q, Liu Q, Jiang G. Magnetic iron oxide nanoparticles: An emerging threat for the environment and human health. J Environ Sci (China) 2025; 152:188-202. [PMID: 39617545 DOI: 10.1016/j.jes.2024.04.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 12/18/2024]
Abstract
Magnetic iron oxide nanoparticles (FexOy NPs, mainly Fe3O4 and γ-Fe2O3) are nanomaterials ubiquitously present in aquatic, terrestrial, and atmospheric environments, with a high prevalence and complex sources. Over the past decade, numerous reports have emerged on the presence of exogenous particles in human body, facilitated by the rapid development of separation and detection methods. The health risk associated with magnetic FexOy NP have garnered escalating attention due to their presence in human blood and brain tissues, especially for their potential association with neurodegenerative diseases like Alzheimer's disease. In this paper, we provide a comprehensive overview of sources, analysis methods, environmental impacts, and health risks of magnetic FexOy NP. Currently, most researches are primarily based on engineered FexOy NP, while reports about magnetic FexOy NP existing in real-world environments are still limited, especially for their occurrence levels in various environmental matrices, environmental transformation behavior, and biotoxic effects. Our study reviews this emerging pollutant, providing insights to address current research deficiencies and chart the course for future studies.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Shu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weican Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cha Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhuan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinghua Zhang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China.
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wang P, Si H, Li C, Xu Z, Guo H, Jin S, Cheng H. Plant genetic transformation: achievements, current status and future prospects. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2034-2058. [PMID: 40052992 PMCID: PMC12120897 DOI: 10.1111/pbi.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 05/31/2025]
Abstract
Regeneration represents a fundamental biological process wherein an organism's tissues or organs repair and replace themselves following damage or environmental stress. In plant systems, injured tree branches can regenerate adventitious buds and develop new crowns through propagation techniques like cuttings and canopy pruning, while transgenic plants emerge via tissue culture in genetic engineering processes intimately connected to plant regeneration mechanisms. The advancement of plant regeneration technology is critical for addressing complex and dynamic climate challenges, ultimately ensuring global agricultural sustainability. This review comprehensively synthesizes the latest genetic transformation technologies, including transformation systems across woody, herbaceous and algal species, organellar genetic modifications, crucial regeneration factors facilitating Agrobacterium-mediated transformations, the intricate hormonal networks regulating plant regeneration, comparative analyses of transient transformation approaches and marker gene dynamics throughout transformation processes. Ultimately, the review offers novel perspectives on current transformation bottlenecks and proposes future research trajectories.
Collapse
Affiliation(s)
- Peilin Wang
- Academician Workstation, National Nanfan Research InstituteChinese Academy of Agricultural SciencesSanyaChina
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA)Chinese Academy of Agricultural SciencesBeijingChina
| | - Huan Si
- Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Chenhui Li
- Academician Workstation, National Nanfan Research InstituteChinese Academy of Agricultural SciencesSanyaChina
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA)Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Huiming Guo
- Academician Workstation, National Nanfan Research InstituteChinese Academy of Agricultural SciencesSanyaChina
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA)Chinese Academy of Agricultural SciencesBeijingChina
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hongmei Cheng
- Academician Workstation, National Nanfan Research InstituteChinese Academy of Agricultural SciencesSanyaChina
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA)Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
3
|
Nohesara M, Malekzadeh E, Motlagh MB, Tatari A. Effect of nanocellulose-assisted green-synthesized iron nanoparticles and conventional sources of Fe on pot marigold plants symbiotically with arbuscular mycorrhizal fungus (Funneliformis mosseae). BMC PLANT BIOLOGY 2025; 25:721. [PMID: 40437364 PMCID: PMC12117787 DOI: 10.1186/s12870-025-06758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 05/21/2025] [Indexed: 06/01/2025]
Abstract
The objective of this study was to investigate the effect of nanocellulose-assisted green-synthesized iron nanoparticles (FeNPs) and conventional sources of Fe on pot marigold (Calendula officinalis L.) plants symbiotically with arbuscular mycorrhizal (AM). Pot marigold plants were inoculated with Funneliformis mosseae in addition to applying ferrous sulfate, FeNPs, and Fe-EDDHA at a rate of 10 mg Fe/kg soil, which follows the recommended rates of fertilizer. Their effects on plant growth, morphology, and physiological parameters were to be compared in the experiment. According to the findings, FeNPs significantly increased plant height, mean stem length, flower number, and total flower lifespan, especially when used with AMF. Most notably, this treatment produced the highest total chlorophyll content (6.62 mg/g FW), active iron in leaves (10 µg/g FW), essential oil (5.75%), mean number of leaves per plant (26.25), number of flowers per plant (6.5), and overall flower lifespan (92.75 days). It also produced superior mycorrhizal root colonization (52.47%). However, because of its lower uptake efficiency and rapid oxidation, ferrous sulfate showed limited performance. By enhancing iron bioavailability, the FeNPs promoted more effective metabolic activity and nutrient absorption. These results demonstrate the advantage of producing FeNPs as a bio-sustainable and biocompatible alternative for synthetic chelates, thus providing an interesting way to improve crop growth promotion in mycorrhizal cropping systems.
Collapse
Affiliation(s)
- Maryam Nohesara
- Department of Soil Science, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, PO Box: 4918943464, Gorgan, Golestan Province, Iran
| | - Elham Malekzadeh
- Department of Soil Science, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, PO Box: 4918943464, Gorgan, Golestan Province, Iran.
| | - Mojtaba Barani Motlagh
- Department of Soil Science, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, PO Box: 4918943464, Gorgan, Golestan Province, Iran
| | - Aliasghar Tatari
- Department of Cellulose Science and Engineering, Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
4
|
Shahzad R, Koerniati S, Harlina PW, Hastilestari BR, Djalovic I, Prasad PVV. Iron oxide nanoparticles enhance alkaline stress resilience in bell pepper by modulating photosynthetic capacity, membrane integrity, carbohydrate metabolism, and cellular antioxidant defense. BMC PLANT BIOLOGY 2025; 25:170. [PMID: 39924529 PMCID: PMC11808985 DOI: 10.1186/s12870-025-06180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Bell pepper (Capsicum annuum L.) is a commercially important and nutritionally rich vegetable crop in the Solanaceae family. Alkaline stress (AS) can disrupt growth, metabolism, and, particularly, nutritional quality. This study aims to evaluate the role of iron oxide nanoparticles (FeNP) in mitigating AS and enhancing plant growth and metabolic functions by conducting experiments under controlled greenhouse conditions with four main treatments: AS (irrigating plants with alkaline salts mixture solution); FeNP (foliar application of Fe3O4 nanoparticles at 100 mg L-¹); AS + FeNP (integrated treatment of AS and FeNP); and CK (control). The results clearly demonstrated that the AS treatment negatively affects plant biomass, photosynthetic attributes, membrane integrity, carbohydrate metabolism, and the balance of the antioxidant system. Additionally, key phenolic and flavonoid compounds decreased under the AS, indicating a detrimental effect on the plant's secondary metabolites. In contrast, the application of FeNP under the AS not only improved growth and photosynthetic attributes but also enhanced membrane integrity and restored antioxidant balance. This restoration was driven by the accumulation of sugars (glucose, fructose, sucrose) and starch, along with key carbohydrate metabolism enzymes-sucrose phosphate synthase (SPS), sucrose synthase (SuSy), neutral invertase (NI), and vacuolar invertase (VI)-and their associated gene expression. The correlation analysis further revealed a tight regulation of carbohydrate metabolism at both enzymatic and transcript levels in all tissue types, except for SPS in the roots. Furthermore, the AS + FeNP treatment resulted in increased levels of key phenolics (dihydrocapsaicin, capsaicin, p-coumaric acid, sinapic acid, p-OH benzoic acid, p-OH benzaldehyde, and ferulic acid) and flavonoid compounds (dihydroquercetin, naringenin, kaempferol, dihydrokaempferol, and quercetin) compared to the AS treatment, thus suggesting that these secondary metabolites likely contribute to the stabilization of cellular structures and membranes, ultimately supporting improved physiological functions and resilience under stress. In conclusion, the application of FeNP demonstrate potential in enhancing the resilience of bell pepper plants against the AS by improving growth, carbohydrate metabolism, and the levels of secondary metabolites.
Collapse
Affiliation(s)
- Raheel Shahzad
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia.
| | - Sri Koerniati
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung, 45363, Indonesia
| | - Bernadetta Rina Hastilestari
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong, 16911, Indonesia
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki 30, Novi Sad, 21000, Serbia
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, 108 Waters Hall, 1603 Old Claflin Place, Manhattan, KS, 66506, USA
| |
Collapse
|
5
|
Prokisch J, Nguyen DHH, Muthu A, Ferroudj A, Singh A, Agrawal S, Rajput VD, Ghazaryan K, El-Ramady H, Rai M. Carbon Nanodot-Microbe-Plant Nexus in Agroecosystem and Antimicrobial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1249. [PMID: 39120354 PMCID: PMC11314255 DOI: 10.3390/nano14151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The intensive applications of nanomaterials in the agroecosystem led to the creation of several environmental problems. More efforts are needed to discover new insights in the nanomaterial-microbe-plant nexus. This relationship has several dimensions, which may include the transport of nanomaterials to different plant organs, the nanotoxicity to soil microbes and plants, and different possible regulations. This review focuses on the challenges and prospects of the nanomaterial-microbe-plant nexus under agroecosystem conditions. The previous nano-forms were selected in this study because of the rare, published articles on such nanomaterials. Under the study's nexus, more insights on the carbon nanodot-microbe-plant nexus were discussed along with the role of the new frontier in nano-tellurium-microbe nexus. Transport of nanomaterials to different plant organs under possible applications, and translocation of these nanoparticles besides their expected nanotoxicity to soil microbes will be also reported in the current study. Nanotoxicity to soil microbes and plants was investigated by taking account of morpho-physiological, molecular, and biochemical concerns. This study highlights the regulations of nanotoxicity with a focus on risk and challenges at the ecological level and their risks to human health, along with the scientific and organizational levels. This study opens many windows in such studies nexus which are needed in the near future.
Collapse
Affiliation(s)
- József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
| | - Duyen H. H. Nguyen
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat 66000, Vietnam
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Arjun Muthu
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Aya Ferroudj
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Animal Husbandry, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov on Don 344006, Russia;
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Hassan El-Ramady
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mahendra Rai
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
| |
Collapse
|
6
|
Gamito G, Monteiro CJ, Dias MC, Oliveira H, Silva AM, Faustino MAF, Silva S. Impact of Fe 3O 4-porphyrin hybrid nanoparticles on wheat: Physiological and metabolic advance. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134243. [PMID: 38657506 DOI: 10.1016/j.jhazmat.2024.134243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Iron-magnetic nanoparticles (Fe-NMPs) are widely used in environmental remediation, while porphyrin-based hybrid materials anchored to silica-coated Fe3O4-nanoparticles (Fe3O4-NPs) have been used for water disinfection purposes. To assess their safety on plants, especially concerning potential environmental release, it was investigated for the first time, the impact on plants of a silica-coated Fe3O4-NPs bearing a porphyrinic formulation (FORM) - FORM@NMP. Additionally, FORM alone and the magnetic nanoparticles without FORM anchored (NH2@NMP) were used for comparison. Wheat (Triticum aestivum L.) was chosen as a model species and was subjected to three environmentally relevant doses during germination and tiller development through root application. Morphological, physiological, and metabolic parameters were assessed. Despite a modest biomass decrease and alterations in membrane properties, no major impairments in germination or seedling development were observed. During tiller phase, both Fe3O4-NPs increased leaf length, and photosynthesis exhibited varied impacts: both Fe3O4-NPs and FORM alone increased pigments; only Fe3O4-NPs promoted gas exchange; all treatments improved the photochemical phase. Regarding oxidative stress, lipid peroxidation decreased in FORM and FORM@NMP, yet with increased O2-• in FORM@NMP; total flavonoids decreased in NH2@NMP and antioxidant enzymes declined across all materials. Phenolic profiling revealed a generalized trend towards a decrease in flavones. In conclusion, these nanoparticles can modulate wheat physiology/metabolism without apparently inducing phytotoxicity at low doses and during short-time exposure. ENVIRONMENTAL IMPLICATION: Iron-magnetic nanoparticles are widely used in environmental remediation and fertilization, besides of new applications continuously being developed, making them emerging contaminants. Soil is a major sink for these nanoparticles and their fate and potential environmental risks in ecosystems must be addressed to achieve more sustainable environmental applications. Furthermore, as the reuse of treated wastewater for agricultural irrigation is being claimed, it is of major importance to disclose the impact on crops of the nanoparticles used for wastewater decontamination, such as those proposed in this work.
Collapse
Affiliation(s)
- Gonçalo Gamito
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carlos Jp Monteiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Maria Celeste Dias
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; University of Coimbra, Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Helena Oliveira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur Ms Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Maria A F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|