1
|
Du W, Xu X, An L, Yan F, Chen JP, Dai R. Simultaneous removal of Microcystis aeruginosa and microplastics by oxidation enhanced coagulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125555. [PMID: 39701368 DOI: 10.1016/j.envpol.2024.125555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The composite pollution is an increasingly severe challenge in the field of water treatment. Especially, microplastics (MPs) contamination and Microcystis aeruginosa (M. aeruginosa) were verified that they could synergistically pose a serious threat to safety of drinking water. Therefore, developing effective removal technology is an urgent task. In this study, the simultaneous removal of M. aeruginosa and polystyrene (PS, a typical plastic matter) was investigated by H2O2 enhanced Fe(II) coagulation. The results demonstrated that the removal rate of both algae and PS can reach over 90%. It was also demonstrated that the PS removal efficiency increased from 23.3% to 97.3% with the increase of M. aeruginosa biomass from 0 cells/mL to 0.5 × 106 cells/mL. The possible reason might be that the addition of algal cells raises the number of contaminant particles, which greatly increases the floc size during the coagulation process. It makes MPs easier to be trapped by sweep flocculation in this process. Additionally, naturally weathered polystyrene (NWPS) exhibited higher removal rate than virgin PS, due to more original functional groups, larger particle size (d50 9.75 μm-11.25 μm), and a lower absolute zeta potential (-34.15 mV to -30.1 mV). Furthermore, low Fe residue level and AOM (algal organic matter) control was simultaneously achieved in this process (TOC <1 mg/L, MCs <1 μg/L). Therefore, this study suggests that the H2O2-Fe(II) process is an efficient and green technology for the removal of M. aeruginosa and PS composite pollutants without secondary pollution, which is promising technology in drinking water treatment plant.
Collapse
Affiliation(s)
- Wenjun Du
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xin Xu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Lili An
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Feng Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - J Paul Chen
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, 119260, Singapore; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruihua Dai
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, 119260, Singapore.
| |
Collapse
|
2
|
Paul I, Biswas R, Halder G. Traversing the potential of phytoremediation and phycoremediation as pioneering technologies in microplastic mitigation - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177200. [PMID: 39471944 DOI: 10.1016/j.scitotenv.2024.177200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
With the advent of numerous reports related to health and environmental hazards associated with microplastics (MPs), scientists have been engrossed in developing sustainable technologies for MP mitigation. Conventional methods for the remediation of MPs have several limitations, but with the increasing demand for biological mitigation methods, the latest technologies are prioritized. Among biological-driven methods, phytoremediation and phycoremediation are the two peaking approaches that have gained momentum because of their eco-friendliness, cost-effectiveness, and recyclability options. Investigations of the mechanisms underlying phytoremediation and phycoremediation processes can provide possible insights into practical applications in the present scenario. Modern instrumentation is a prerequisite for identifying and characterizing MPs and quantifying their removal efficiency. The current investigation highlights a unique combination of elaborate discussions on the use of plants in the mitigation of MPs, bibliometric analysis of the current status of research, their relevance to the modern context, and the development of a combinatorial strategy to amalgamate the advantages of these two unique processes via the concept of constructed wetlands for synergistically mitigating MPs. Thus, this review provides fresh insights into addressing MP pollution with sustainable ideologies to achieve improved mitigation outcomes without compromising the balance of the ecosystem.
Collapse
Affiliation(s)
- Indrani Paul
- Department of Biotechnology, Brainware University, Kolkata -700125, West Bengal, India
| | - Rupsa Biswas
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur-713209, West Bengal, India; Centre for Research on Environment and Water, National Institute of Technology Durgapur, Durgapur-713209, West Bengal, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur-713209, West Bengal, India.
| |
Collapse
|
3
|
Jiang Y, Niu S, Wu J. The role of algae in regulating the fate of microplastics: A review for processes, mechanisms, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175227. [PMID: 39098419 DOI: 10.1016/j.scitotenv.2024.175227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
As an important emerging pollutant, the fate of microplastics (MPs) in ecosystems is of growing global concern. In addition to hydrodynamics and animals, algae can also affect the transport of MPs in aquatic environments, which could potentially remove MPs from the water column. Although researchers have conducted many studies on the sink of MPs regulated by algae in both marine and freshwater environments, there is still a lack of comprehensive understanding coupled with the increasingly scattered study contents and findings. This review aims to provide a systematic discussion of the processes, mechanisms, and influencing factors, which are coupled with the sink of MPs changes by algae. The main processes identified include retention, flocculation, deposition, and degradation. The retention of MPs is achieved by adhesion of MPs to algae or embedment/encrustation of MPs within the epibiont matrix of algae, thereby preventing MPs from migrating with water currents. The extracellular polymeric substances (EPS) and enzymes produced by algal metabolic activities can lead not only to the formation of aggregates containing MPs but also to the biodegradation of MPs. The processes that algae alter the fate of MPs in aquatic environments are very complex and can be influenced by various factors such as algal attributes, microplastic characteristics and environmental conditions. This review provides insights into recent advances in the fate of aquatic MPs and highlights the need for further research on MPs-algae interactions, potentially shortening the knowledge gap in the sink of MPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| | - Siping Niu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China.
| | - Jing Wu
- Department of Environmental Science and Engineering, School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, People's Republic of China
| |
Collapse
|
4
|
Shen M, Li H, Hu T, Wang W, Zheng K, Zhang H. Are micro/nanorobots an effective solution to eliminate micro/nanoplastics in water/wastewater treatment plants? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175153. [PMID: 39089384 DOI: 10.1016/j.scitotenv.2024.175153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
The extensive production and widespread use of plastic products have resulted in the gradual escalation of plastic pollution. Micro/nano/plastic pollution has become a global issue, and addressing how to "green" remove them is a crucial topic that needs to be tackled at this stage. Recently, micro/nanorobots have offered a promising solution for improving water monitoring and remediation as an environmentally friendly remediation strategy. Micro/nanorobots have been proven to efficiently remove micro/nanoplastics from water bodies. Micro/nanoplastics are captured by micro/nanorobots in water through electrostatic adsorption and electrophoretic interactions, and separation is achieved under the action of an external transverse rotating magnetic field. Their small size enables them to navigate easily in complex environments, while magnetic and optical drives help them move along established routes and reach different areas. With the assistance of these innovative robots, diffusion-limited reactions can be overcome, allowing for active contact with target pollutants. However, research on the removal of micro/nanoplastics by micro/nanorobots is still in its early stages. The dependence on chemical fuels and high costs severely limit the development and application of micro/nanorobots. Micro/nanoplastics are frequently captured by micro/nanorobots, but the degradation efficiency of micro/nanoplastics remains very low. Additionally, the secondary pollution caused by micro/nanorobots is also a key factor limiting their implementation. Although micro/nanorobots are a very promising technology for removing micro/nanoplastics, they still need to be explored in their applications. This paper discusses the opportunities and challenges faced by micro/nanorobots in removing micro/nanoplastics. Development and application of self-driven intelligent micro/nanorobots will help expedite the eco-friendly removal of micro/nanoplastics and other emerging pollutants.
Collapse
Affiliation(s)
- Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Haokai Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Tong Hu
- College of Environment and Resources, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Wenjun Wang
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Kaixuan Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecological Environment, Guangzhou 510655, PR China
| | - Huijuan Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
5
|
Kumar M, Chaudhary V, Chaudhary V, Srivastav AL, Madhav S. Impacts of microplastics on ecosystem services and their microbial degradation: a systematic review of the recent state of the art and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63524-63575. [PMID: 39508948 DOI: 10.1007/s11356-024-35472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Microplastics are tiny plastic particles with a usual diameter ranging from ~ 1 μ to 5 µm. Recently, microplastic pollution has raised the attention of the worldwide environmental and human concerns. In human beings, digestive system illness, respiratory system disorders, sleep disturbances, obesity, diabetes, and even cancer have been reported after microplastic exposure either through food, air, or skin. Similarly, microplastics are also having negative impacts on the plant health, soil microorganisms, aquatic lives, and other animals. Policies and initiatives have already been in the pipeline to address this problem to deal with microplastic pollution. However, many obstacles are also being observed such as lack of knowledge, lack of research, and also absence of regulatory frameworks. This article has covered the distribution of microplastics in water, soil, food and air. Application of multimodel strategies including fewer plastic item consumption, developing low-cost novel technologies using microorganisms, biofilm, and genetic modified microorganisms has been used to reduce microplastics from the environment. Researchers, academician, policy-makers, and environmentalists should work jointly to cope up with microplastic contamination and their effect on the ecosystem as a whole which can be reduced in the coming years and also to make earth clean.
Collapse
Affiliation(s)
- Mukesh Kumar
- College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College Meerut, Meerut, Uttar Pradesh, India
| | - Vidisha Chaudhary
- Institute of Business Studies, CCS University, Meerut, India, Uttar Pradesh
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Solan, Himachal Pradesh, India.
- Center of Excellence for Sustainability, Chitkara University, Solan, Himachal Pradesh, India.
| | - Sughosh Madhav
- Department of Civil Engineering, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Wang C, Lin X, Zhang X, Show PL. Research advances on production and application of algal biochar in environmental remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123860. [PMID: 38537803 DOI: 10.1016/j.envpol.2024.123860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/01/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Algae, comprising microalgae and macroalgae, have emerged as a promising feedstock for the production of functional biochar. Recently, the application of algal biochar in environmental remediation gains increasing attention. This review summarizes research advancements in the synthesis and application of algal biochar, a versatile and sustainable material for environmental remediation ranging from wastewater treatment to soil improvement. Algal biochar can be prepared by pyrolysis, microwave-assisted pyrolysis, and hydrothermal carbonization. Physical and chemical modifications have proven to be effective for improving biochar properties. Algal biochar is promising for removing diverse pollutants including heavy metals, organic pollutants, and microplastics. The role in soil improvement signifies a sustainable approach to enhancing soil structure, nutrient retention, and microbial activity. Research gaps are identified based on current understanding, necessitating further exploration into variations in biochar characteristics, the performance improvement, large-scale applications, and the long-term evaluation for environmental application. This review provides a better understanding of algal biochar as a sustainable and effective tool in environmental remediation.
Collapse
Affiliation(s)
- Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China
| | - Xiao Lin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Nohara NML, Ariza-Tarazona MC, Triboni ER, Nohara EL, Villarreal-Chiu JF, Cedillo-González EI. Are you drowned in microplastic pollution? A brief insight on the current knowledge for early career researchers developing novel remediation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170382. [PMID: 38307272 DOI: 10.1016/j.scitotenv.2024.170382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Microplastics (MPs) composed of different polymers with various shapes, within a vast granulometric distribution (1 μm - 5 mm) and with a wide variety of physicochemical surface and bulk characteristics spiral around the globe, with different atmospheric, oceanic, cryospheric, and terrestrial residence times, while interacting with other pollutants and biota. The challenges of microplastic pollution are related to the complex relationships between the microplastic generation mechanisms (physical, chemical, and biological), their physicochemical properties, their interactions with other pollutants and microorganisms, the changes in their properties with aging, and their small sizes that facilitate their diffusion and transportation between the air, water, land, and biota, thereby promoting their ubiquity. Early career researchers (ERCs) constitute an essential part of the scientific community committed to overcoming the challenges of microplastic pollution with their new ideas and innovative scientific perspectives for the development of remediation technologies. However, because of the enormous amount of scientific information available, it may be difficult for ERCs to determine the complexity of this environmental issue. This mini-review aims to provide a quick and updated overview of the essential insights of microplastic pollution to ERCs to help them acquire the background needed to develop highly innovative physical, chemical, and biological remediation technologies, as well as valorization proposals and environmental education and awareness campaigns. Moreover, the recommendations for the development of holistic microplastic pollution remediation strategies presented here can help ERCs propose technologies considering the environmental, social, and practical dimensions of microplastic pollution while fulfilling the current government policies to manage this plastic waste.
Collapse
Affiliation(s)
- Nicoly Milhardo Lourenço Nohara
- Department of Chemical Engineering, School of Engineering of Lorena, University of São Paulo, Estrada Municipal do Campinho, no number, Lorena, Brazil
| | - Maria Camila Ariza-Tarazona
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
| | - Eduardo Rezende Triboni
- Department of Chemical Engineering, School of Engineering of Lorena, University of São Paulo, Estrada Municipal do Campinho, no number, Lorena, Brazil
| | - Evandro Luís Nohara
- Department of Mechanical Engineering, University of Taubaté, R. Daniel Daneli, no number, Taubaté, Brazil
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66628, Nuevo León, Mexico
| | - Erika Iveth Cedillo-González
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti, Florence 50121, Italy.
| |
Collapse
|