1
|
Zuo M, Ye M, Lin H, Liao S, Xing X, Liu J, Wu D, Huang Z, Ren X. Mitochondrial Dysfunction in Environmental Toxicology: Mechanisms, Impacts, and Health Implications. Chem Res Toxicol 2024; 37:1794-1806. [PMID: 39485318 DOI: 10.1021/acs.chemrestox.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria, pivotal to cellular metabolism, serve as the primary sources of biological energy and are key regulators of intracellular calcium ion storage, crucial for maintaining cellular calcium homeostasis. Dysfunction in these organelles impairs ATP synthesis, diminishing cellular functionality. Emerging evidence implicates mitochondrial dysfunction in the etiology and progression of diverse diseases. Environmental factors that induce mitochondrial dysregulation raise significant public health concerns, necessitating a nuanced comprehension and classification of mitochondrial-related hazards. This review systematically adopts a toxicological perspective to illuminate the biological functions of mitochondria, offering a comprehensive exploration of how toxicants instigate mitochondrial dysfunction. It delves into the disruption of energy metabolism, the initiation of mitochondrial fragility and autophagy, and the induction of mutations in mitochondrial DNA by mutagens. The overarching objective is to enhance our understanding of the repercussions of mitochondrial damage on human health.
Collapse
Affiliation(s)
- Mingyang Zuo
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Mingqi Ye
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Haofeng Lin
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Shicheng Liao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Desheng Wu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Zhenlie Huang
- School of Public Health, Southern Medical University, No. 1023 Shatai Nan Road, Baiyun District, Guangzhou 510515, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, No 8 Longyuan Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Wu M, Feng S, Liu Z, Tang S. Bioremediation of petroleum-contaminated soil based on both toxicity risk control and hydrocarbon removal-progress and prospect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59795-59818. [PMID: 39388086 DOI: 10.1007/s11356-024-34614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024]
Abstract
Petroleum contamination remains a worldwide issue requiring cost-effective bioremediation techniques. However, establishing a universal bioremediation strategy for all types of oil-polluted sites is challenging. This difficulty arises from the heterogeneity of soil textures, the complexity of oil products, and the variations in local climate and environment across different oil-contaminated regions. Several factors can impede bioremediation efficacy: (i) differences in bioavailability and biodegradability between aliphatic and aromatic fractions of crude oil; (ii) inconsistencies between hydrocarbon removal efficiency and toxicity attenuation during remediation; (iii) varying adverse effect of aliphatic and aromatic fractions on soil microorganisms. This review examines the ecotoxicity risk of petroleum contamination to soil fauna and flora. It also discusses three primary bioremediation strategies: biostimulation with nutrients, bioaugmentation with petroleum degraders, and phytoremediation with plants. Based on current research and state-of-the-art challenges, we highlighted future research scopes should focus on (i) exploring the ecotoxicity differentiation of aliphatic and aromatic fractions of crude oil, (ii) establishing unified risk factors and indicators for evaluating oil pollution toxicity, (iii) determining the fate and transformation of aliphatic and aromatic fractions of crude oil using advanced analytical techniques, and (iv) developing combined bioremediation techniques that improve petroleum removal and ecotoxicity attenuation.
Collapse
Affiliation(s)
- Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China.
| | - Shuang Feng
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Zeliang Liu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| | - Shiwei Tang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an, 710055, China
| |
Collapse
|
3
|
Tian G, He F, Li X, Hu S, Zhao X, Guo S, Wang T, Wang H, Zong W, Liu R. Novel mechanistic insights into Cr(VI) and Cr(III) induced discrepancies of cellular toxicity and oxidative injury events in Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173970. [PMID: 38876350 DOI: 10.1016/j.scitotenv.2024.173970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Chromium (Cr) poses a high ecological risk, however the toxic mechanisms of Cr in different valence states to soil organisms at cellular and molecular levels are not exactly. In this study, the Eisenia fetida coelomocytes and Cu/Zn-superoxide dismutase (Cu/Zn-SOD) were chosen as the target subjects to investigate the effects and mechanisms of cellular toxicity induced by Cr(VI) and Cr(III). Results indicated that Cr(VI) and Cr(III) significantly reduced the coelomocytes viability. The level of reactive oxygen species (ROS) was markedly increased after Cr(VI) exposure, which finally reduced antioxidant defense abilities, and induced lipid peroxidation and cellular membrane damage in earthworm coelomocytes. However, Cr(III) induced lower levels of oxidative stress and cellular damage with respect to Cr(VI). From a molecular perspective, the binding of both Cr(VI) and Cr(III) with Cu/Zn-SOD resulted in protein backbone loosening and reduced β-Sheet content. The Cu/Zn-SOD showed fluorescence enhancement with Cr(III), whereas Cr(VI) had no obvious effect. The activity of Cu/Zn-SOD continued to decrease with the exposure of Cr. Molecular docking indicated that Cr(III) interacted more readily with the active center of Cu/Zn-SOD. Our results illustrate that oxidative stress induced by Cr(VI) and Cr(III) plays an important role in the cytotoxic differences of Eisenia fetida coelomocytes and the binding of Cr with Cu/Zn-SOD can also affect the normal structures and functions of antioxidant defense-associated protein.
Collapse
Affiliation(s)
- Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hao Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
4
|
Xu Q, Li X, Xu Z, Chen S, Xiong D. Water-accommodated fractions of crude oil and its mixture with chemical dispersant impairs oxidase stress and energy metabolism disorders in Oryzias melastigma embryos. CHEMOSPHERE 2024; 363:142912. [PMID: 39084299 DOI: 10.1016/j.chemosphere.2024.142912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
In this study, marine medaka (Oryzias melastigma) embryos were exposed to different concentrations of water-accommodated fractions (WAFs) and chemically enhanced water-accommodated fractions (CEWAFs) of Oman crude oil for 14 d by semi-static exposure methods. The effects on growth and development and energy metabolism process were evaluated. Results showed that embryo survival and hatchability were decreased in a dose-dependent manner with an increase in the concentration of petroleum hydrocarbon compounds, whereas the malformation exhibited a dose-dependent increase. Compared to the control, the adenosine triphosphate (ATP) content and Na+-K+-ATPase (NKA) activities of embryos exposed to both WAFs and CEWAFs were reduced, while intracellular reactive oxygen species (ROS) levels and NADH oxidase (NOX) activities were increased. Our study demonstrated that exposure to crude oil dispersed by chemical dispersant affected the growth and development of marine medaka embryos, caused oxidative stress while produced a series of malformations in the body and dysregulation in energy metabolism. In comparison, the toxic effects of chemically dispersed crude oil might be more severe than the oil itself in the equivalent diluted concentration treatment solution. These would provide more valuable and reliable reference data for the use of chemical dispersants in oil spills.
Collapse
Affiliation(s)
- Qiaoyue Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xishan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Zhu Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Si Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
5
|
Wang X, Guo J, Zang S, Liu B, Wu Y. Comparison of Flavonoid Content, Antioxidant Potential, Acetylcholinesterase Inhibition Activity and Volatile Components Based on HS-SPME-GC-MS of Different Parts from Matteuccia struthiopteris (L.) Todaro. Molecules 2024; 29:1142. [PMID: 38474653 DOI: 10.3390/molecules29051142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Matteuccia struthiopteris is one of the most globally consumed edible ferns and widely used in folk medicine. Reports mainly focus on young fronds and the rhizome which are common edible medicinal parts. However, there are few detailed reports on other parts. Therefore, the volatile components of different parts based on HS-SPME-GC-MS were identified, and total flavonoid contents, antioxidant activities and acetylcholinesterase inhibitory activities were compared in order to reveal the difference of volatile components and potential medicinal value of different parts. The results showed that total flavonoid contents, antioxidant activities and volatile components of different parts were obviously different. The crozier exhibited the strongest antioxidant activities, but only underground parts exhibited a dose-dependent inhibition potential against AChE. Common volatile compounds were furfural and 2-furancarboxaldehyde, 5-methyl-. In addition, it was found that some volatile components from adventitious root, trophophyll, sporophyll and petiole were important ingredients in food, cosmetics, industrial manufacturing and pharmaceutical applications.
Collapse
Affiliation(s)
- Xin Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Jiatao Guo
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Siqi Zang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Baodong Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yuhuan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
6
|
He F, Wan J, Huo C, Li X, Cui Z, Li Y, Liu R, Zong W. New strategies for evaluating imidacloprid-induced biological consequences targeted to Eisenia fetida species and the corresponding mechanisms of its toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119456. [PMID: 37897899 DOI: 10.1016/j.jenvman.2023.119456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Imidacloprid (IMI), a neonicotinoid insecticide, has a wide variety of applications in both agriculture and horticulture. As a result of it massive and repeated use, its traces remained in soil pose severe damage to soil invertebrates, particularly earthworms. Limited information is available regarding the underlying mechanisms of IMI toxicity toward earthworms at the molecular, transcriptional, and cellular levels. Here, Eisenia fetida coelomocytes and key defensive proteins were selected as targeted receptors to explore the toxic mechanisms of oxidative stress-mediated cytotoxicity, genotoxicity, and antioxidant responses induced by IMI stress and the molecular mechanisms underlying the binding of IMI and superoxide dismutase (SOD)/catalase (CAT). Results showed that IMI exposure destroyed the cell membrane integrity of earthworm cells, causing cell damage and cytotoxicity. The intracellular levels of ROS, including ·O2- and H2O2 were induced by IMI exposure, thereby triggering oxidative stress and damage. Moreover, IMI exposure attenuated the antioxidative stress responses (reduced antioxidant capacity and CAT/SOD activities) and caused deleterious effects (enhanced DNA damage, lipid peroxidation (LPO), and protein carbonylation (PCO)) through ROS-mediated oxidative stress pathway. Aberrant gene expression associated with oxidative stress and defense regulation, including CAT, CRT, MT, SOD, GST, and Hsp70 were induced after IMI exposure. Concentration-dependent conformational and structural alterations of CAT/SOD were observed when IMI binding. Also, direct binding of IMI resulted in significant inhibition of CAT/SOD activities in vitro. Molecular simulation showed that IMI preferred to bind to CAT active center through its direct binding with the key residue Tyr 357, while IMI bound more easily to the connecting cavity of two subunits away from SOD active center. In addition, hydrogen bonds and hydrophobic force are the main driving force of IMI binding with CAT/SOD. These findings have implications for comprehensive evaluation of IMI toxicity to soil eco-safety and offer novel strategies to elucidate the toxic mechanisms and pathways of IMI stress.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong, 250014, PR China
| |
Collapse
|
7
|
Qin S, Xiao X, Dai Z, Zhao G, Cui Z, Wu Y, Yang C. Effects of Bacillus licheniformis on growth performance, immune and antioxidant functions, and intestinal microbiota of broilers. Poult Sci 2024; 103:103210. [PMID: 37980737 PMCID: PMC10684393 DOI: 10.1016/j.psj.2023.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/21/2023] Open
Abstract
Bacillus licheniformis (BL) has been widely regarded as an important growth promoter in recent years. However, its usage in animal industry still needs more foundations. The aim of our study was to study the effects of BL on the growth performance, immunity, oxidative function and intestinal flora of broilers. A total of 760 one-day-old yellow-feathered broilers were randomly divided into 4 groups with 10 replicates per group and 19 broilers per replicate. The broilers in the control group (CON) were fed with basal diet. The treatment groups were supplemented with 250 mg/kg (BL250), 500 mg/kg (BL500) and 750 mg/kg (BL750) BL in the basal diet for 70 d. Results showed that BL groups significantly increased the body weight (BW) and average daily gain (ADG), decreased average daily feed intake (ADFI) and feed conversion ratio (FCR). In addition, the spleen and bursa indexes were higher in the BL groups than that in the CON group at d 70. BL supplementation also markedly increased the levels of immunoglobulins Y (IgY), IgA and anti-inflammatory interleukin 10 (IL-10), reduced the levels of proinflammatory IL-1β, tumor necrosis factor α (TNF-α) and IL-2 in the serum at 70 d in a concentration-dependent manner. Besides, BL addition significantly increased the levels of series antioxidant enzymes including total antioxidant capacity (T-AOC), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT), and decreased the level of malondialdehyde (MDA) in the serum. Moreover, BL groups showed an obvious increase of isobutyric acid markedly and BL500 group significantly promoted the level of isovaleric acid in cecal contents of broilers. Finally, microbial analysis showed that BL supplementation presented visual separations of microbial composition and increased the relative abundance of p_Proteobacteria, g_Elusimicrobium, and g_Parasutterella comparing with the CON group. Together, this study inferred that dietary BL supplementation improved the growth performance, immune and antioxidant functions, changed the intestinal microflora structure and metabolites of yellow-feathered broilers, which laid a good basis for the application of probiotics in the future.
Collapse
Affiliation(s)
- Songke Qin
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Xiao Xiao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Zhenglie Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Guiling Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Zhenchuan Cui
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Zhejiang, Hangzhou 311300, China.
| |
Collapse
|