1
|
Xiao J, Zhang B, Zhang R, Xiong F, Liu H, Xiang Z, Wei Y, Xia M, Wu N. Impact of land use on antibiotic resistance genes and bacterial communities in rivers. ENVIRONMENTAL RESEARCH 2025; 276:121475. [PMID: 40154785 DOI: 10.1016/j.envres.2025.121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
River ecosystems support essential ecosystem functions and services, including supplying water for domestic, agricultural, and industrial activities, provisioning of hydropower and fisheries, supporting navigation and recreational activities, and regulating water quality. In recent decades, the presence and spread of antibiotic resistance genes (ARGs) have emerged as a key threat to ecosystem health and human well-being. Rivers that are surrounded by human-modified landscapes serve as primary repositories and sources of ARGs. However, our understanding of the relationship between the diversity of ARGs and land use remain limited. We collected 30 sediment samples from five rivers in Ningbo, China, and then classified the sampling sites into two groups (i.e., group A with low levels of human impacts and group B with intense human impact) based on land use in their upstream areas. In total, we found 31 types of ARGs and 148 phyla of bacteria in the samples. ARGs abundance had a positive relationship with the levels of anthropogenic activities, and exhibited significant difference between the two groups. Co-occurrence networks showed that the interrelationship between bacteria and ARGs was more complex in group B than in group A. Moreover, Structural Equation Modeling (SEM) revealed that anthropogenic activity not only posed direct effect on ARGs but also indirectly affected ARGs through bacteria. Our results underscore the profound impacts of land-use changes on the diversity of ARGs, bacteria communities, and their relationships, which highlight the need for integrating ARGs in river assessments in regions with human-dominated land use.
Collapse
Affiliation(s)
- Jiaman Xiao
- School of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China
| | - Bowei Zhang
- School of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, 430056, China
| | - Renbin Zhang
- School of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, 430056, China
| | - Fei Xiong
- School of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, 430056, China
| | - Hao Liu
- School of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, 430056, China
| | - Zichen Xiang
- School of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, 430056, China
| | - Yifu Wei
- School of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, 430056, China
| | - Ming Xia
- School of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan, 430056, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, 430056, China.
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Jing M, Yang W, Rao L, Chen J, Ding X, Zhou Y, Zhang Q, Lu K, Zhu J. Mechanisms of microbial coexistence in a patchy ecosystem: Differences in ecological niche overlap and species fitness between rhythmic and non-rhythmic species. WATER RESEARCH 2024; 256:121626. [PMID: 38642534 DOI: 10.1016/j.watres.2024.121626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Resource patchiness caused by external events breaks the continuity and homogeneity of resource distribution in the original ecosystem. For local organisms, this leads to drastic changes in the availability of resources, breaks down the co-existence of species, and reshuffles the local ecosystem. West Lake is a freshwater lake with resource patchiness caused by multiple exogenous disturbances that has strong environmental heterogeneity that prevents clear observation of seasonal changes in the microbial communities. Despite this, the emergence of rhythmic species in response to irregular changes in the environment has been helpful for observing microbial communities dynamics in patchy ecosystems. We investigated the ecological mechanisms of seasonal changes in microbial communities in West Lake by screening rhythmic species based on the ecological niche and modern coexistence theories. The results showed that rhythmic species were the dominant factors in microbial community changes and the effects of most environmental factors on the microbial community were indirectly realised through the rhythmic species. Random forest analyses showed that seasonal changes in the microbial community were similarly predicted by the rhythmic species. In addition, we incorporated species interactions and community phylogenetic patterns into stepwise multiple regression analyses, the results of which indicate that ecological niches and species fitness may drive the coexistence of these subcommunities. Thus, this study extends our understanding of seasonal changes in microbial communities and provides new ways for observing seasonal changes in microbial communities, especially in ecosystems with resource patches. Our study also show that combining community phylogenies with co-occurrence networks based on ecological niches and modern coexistence theory can further help us understand the ecological mechanisms of interspecies coexistence.
Collapse
Affiliation(s)
- MingFei Jing
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Wen Yang
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Lihua Rao
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Jun Chen
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Xiuying Ding
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Yinying Zhou
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou 310002, China
| | - Quanxiang Zhang
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Kaihong Lu
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China
| | - Jinyong Zhu
- School of Marine Science, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo, Zhejiang 315800, China.
| |
Collapse
|
3
|
Zou S, Lian Q, Ni M, Zhou D, Liu M, Zhang X, Chen G, Yuan J. Spatiotemporal assembly and functional composition of planktonic microeukaryotic communities along productivity gradients in a subtropical lake. Front Microbiol 2024; 15:1351772. [PMID: 38440145 PMCID: PMC10909917 DOI: 10.3389/fmicb.2024.1351772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024] Open
Abstract
Microeukaryotes play crucial roles in the microbial loop of freshwater ecosystems, functioning both as primary producers and bacterivorous consumers. However, understanding the assembly of microeukaryotic communities and their functional composition in freshwater lake ecosystems across diverse environmental gradients remains limited. Here, we utilized amplicon sequencing of 18S rRNA gene and multivariate statistical analyses to examine the spatiotemporal and biogeographical patterns of microeukaryotes in water columns (at depths of 0.5, 5, and 10 m) within a subtropical lake in eastern China, covering a 40 km distance during spring and autumn of 2022. Our results revealed that complex and diverse microeukaryotic communities were dominated by Chlorophyta (mainly Chlorophyceae), Fungi, Alveolata, Stramenopiles, and Cryptophyta lineages. Species richness was higher in autumn than in spring, forming significant hump-shaped relationships with chlorophyll a concentration (Chl-a, an indicator of phytoplankton biomass). Microeukaryotic communities exhibited significant seasonality and distance-decay patterns. By contrast, the effect of vertical depth was negligible. Stochastic processes mainly influenced the assembly of microeukaryotic communities, explaining 63, 67, and 55% of community variation for spring, autumn, and both seasons combined, respectively. Trait-based functional analysis revealed the prevalence of heterotrophic and phototrophic microeukaryotic plankton with a trade-off along N:P ratio, Chl-a, and dissolved oxygen (DO) gradients. Similarly, the mixotrophic proportions were significantly and positively correlated with Chl-a and DO concentrations. Overall, our findings may provide useful insights into the assembly patterns of microeukaryotes in lake ecosystem and how their functions respond to environmental changes.
Collapse
Affiliation(s)
- Songbao Zou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Qingping Lian
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Meng Ni
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Dan Zhou
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Mei Liu
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Xin Zhang
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Guangmei Chen
- Zhejiang Fenghe Fishery Co., Ltd., Lishui, Zhejiang, China
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou, Zhejiang, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Huzhou, Zhejiang, China
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| |
Collapse
|