1
|
Diéguez-Santana K, Casanola-Martin GM, Torres-Gutiérrez R, Rasulev B, González-Díaz H. AQUA Tox: A web tool for predicting aquatic toxicity in rotifer species using intrinsic explainable models. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138050. [PMID: 40157185 DOI: 10.1016/j.jhazmat.2025.138050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The widespread use of chemicals in various industries, including agriculture, cosmetics, pharmaceuticals, and textiles, poses significant environmental risks, particularly in aquatic ecosystems. This study focuses on the toxicity of organic compounds on two rotifer species, Brachionus calyciflorus and Brachionus plicatilis, widely used as bioindicators in ecotoxicology. A database of toxicity data (LC50) was compiled and QSAR/QSTR models were developed to predict chemical toxicity in both freshwater (FW) and saltwater (SW) environments. Using molecular descriptors, the study identified critical factors influencing toxicity, such as hydrophobicity and the presence of chlorine atoms. The models demonstrated strong predictive performance, with R² values exceeding 70 % for both FW and SW conditions. Key descriptors influencing toxicity included hydrophobicity and chlorine content. The models demonstrated strong predictive performance, with R² values exceeding 70 %. A user-friendly web application was developed, enabling the scientific community to assess the aquatic toxicity of chemicals. This tool aids in the design of safer, more sustainable substances, facilitating regulatory compliance and minimizing environmental impacts. The findings highlight the importance of combining computational methods with technological applications for environmental protection.
Collapse
Affiliation(s)
| | - Gerardo M Casanola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA; Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | | | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Basque Center for Biophysics CSIC-UPV/EHU, University of Basque Country UPV/EHU, Leioa 48940, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Biscay 48011, Spain.
| |
Collapse
|
2
|
Jeong H, Ali W, Zinck P, Souissi S, Lee JS. Toxicity of methylmercury in aquatic organisms and interaction with environmental factors and coexisting pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173574. [PMID: 38823721 DOI: 10.1016/j.scitotenv.2024.173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Mercury is a hazardous heavy metal that is distributed worldwide in aquatic ecosystems. Methylmercury (MeHg) poses significant toxicity risks to aquatic organisms, primarily through bioaccumulation and biomagnification, due to its strong affinity for protein thiol groups, which results in negative effects even at low concentrations. MeHg exposure can cause various physiological changes, oxidative stress, neurotoxicity, metabolic disorders, genetic damage, and immunotoxicity. To assess the risks of MeHg contamination in actual aquatic ecosystems, it is important to understand how MeHg interacts with environmental factors such as temperature, pH, dissolved organic matter, salinity, and other pollutants such as microplastics and organic compounds. Complex environmental conditions can cause potential toxicity, such as synergistic, antagonistic, and unchanged effects, of MeHg in aquatic organisms. This review focuses on demonstrating the toxic effects of single MeHg exposure and the interactive relationships between MeHg and surrounding environmental factors or pollutants on aquatic organisms. Our review also recommends further research on biological and molecular responses in aquatic organisms to better understand the potential toxicity of combinational exposure.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Lin H, Wei Y, Li S, Mao X, Qin J, Su S, He T. Changes in transcriptome regulations of a marine rotifer Brachionus plicatilis under methylmercury stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101177. [PMID: 38104474 DOI: 10.1016/j.cbd.2023.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Mercury (Hg), a heavy metal pollutant worldwide, can be transformed into methylmercury (MeHg) by various aquatic microorganisms in water, thus accumulating along the aquatic food chain and posing a particular challenge to human health. Zooplankton plays a crucial role in aquatic ecosystems and serves as a major component of the food chain. To evaluate the effects of MeHg on the rotifer Brachionus plicatilis and reveal the underlying mechanism of these effects, we exposed B. plicatilis to MeHg by either direct immersion or by feeding with MeHg-poisoned Chlorella pyrenoidesa, respectively, and conducted a transcriptomic analysis. The results showed that B. plicatilis directly exposed to MeHg by immersion showed significant enrichment of the glutathione metabolism pathway for detoxification of MeHg. In addition, the exposure to MeHg by feeding induced a significant enrichment of lysosome and notch signaling pathways of rotifers, supporting the hypothesis that MeHg can induce autophagy dysfunction in cells and disturb the nervous system of rotifers. In two different routes of MeHg exposure, the pathway of cytochrome P450 in rotifers showed significant enrichment for resisting MeHg toxicity. Our results suggest further studies on the potential mechanism and biological responses of MeHg toxicity in other links of the aquatic food chain.
Collapse
Affiliation(s)
- Hangyu Lin
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Yanlin Wei
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Songzhang Li
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaodong Mao
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Shengqi Su
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| | - Tao He
- College of Fisheries, Southwest University, Chongqing 400715, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, 400715, China.
| |
Collapse
|