1
|
Zhang Y, Li S, Jiao Y, Ji X, Li Y, Chen Q, Zhang X, Zhang G. Efficient removal of enrofloxacin in swine wastewater using eukaryotic-bacterial symbiotic membraneless bioelectrochemical system. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137513. [PMID: 39938376 DOI: 10.1016/j.jhazmat.2025.137513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
A eukaryotic-bacterial symbiotic membraneless bioelectrochemical system (EBES) reactor with eukaryotic-bacteria symbiotic cathode was developed to treat swine wastewater containing enrofloxacin (ENR), which had high performance at ENR tolerance and operational stability. With ENR concentrations shifting from 2 to 50 mg/L, the removal efficiencies of ENR, chemical oxygen demand (COD) and NH4+-N always were higher than 95 %, and the maximum power output (≥343 mW/m3) could be achieved. At 20 mg/L ENR, the removal efficiencies of ENR, COD and NH4+-N respectively reached to 99.4 ± 0.1 %, 98.5 % ± 0.1 %, and 96.3 % ± 0.5 %, corresponding to the open circuit voltage and maximum power density (Pmax) of EBES were 851 mV and 455 mW/m3. The community analyses showed that bacteria (Comamonas, Rhodobacter, Rhodococcus, and Vermiphilaceae et al.), algae (Chlorella) and fungi (Rozellomycota, Trebouxiophyceae, Exophiala, and Aspergillus et al.) at genus level were the dominate populations in the EBES, and their abundance increased with ENR concentration, suggesting they played key roles to remove ENR and another nutrient element. The low relative abundances (1.9 ×10-7 to 1.1 ×10-5 copies/g) of aac (6')-ib-cr, qnrA, qnrD, qnrS, and gyrA in effluent revealed that the present EBES reactor had superior capabilities in controlling antibiotic-resistance genes and antibiotic-resistant bacteria. Our trial experiments provided a novel way for antibiotic livestock wastewater treatment.
Collapse
Affiliation(s)
- Yaru Zhang
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shanshan Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Jiao
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaorong Ji
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Qinghua Chen
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomei Zhang
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Guodong Zhang
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257029, China.
| |
Collapse
|
2
|
Yu X, Zhao L, Yao Z, Zhao Y, Yu J, Feng J, Luo J, Luo L, Huo L. Methodological study on carbon sequestration accounting for emission reductions from the whole-chain utilization of livestock and poultry manure. ENVIRONMENTAL RESEARCH 2024; 263:120269. [PMID: 39481780 DOI: 10.1016/j.envres.2024.120269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
Effective livestock manure management is crucial for carbon neutrality. Scientific accounting methods and integrated management strategies can help guide reductions in carbon emissions and promote green development. To reduce greenhouse gas emissions by livestock manure, this study analyzed current accounting systems and focused on the complete chain of "collection-treatment-storage-use-returning" of manure based on the theoretical framework of greenhouse gas emissions accounting in the IPCC 2019 Guidelines. Combined with a life cycle assessment, the accounting list and boundaries were clarified, and the whole chain of livestock and poultry manure greenhouse gas accounting methodology system was proposed. Using swine breeding as a case study, this study evaluated the carbon emission reduction and sequestration effect of the whole manure chain using a typical technology model and a typical technological framework. It predicted the carbon reduction potential and sequestration benefits of utilizing swine manure in 2025 and 2030 in four scenarios. The findings indicated that the greenhouse gas emission factor of the whole chain of the six typical swine manure utilization modes in China was -48.82-40.54 kgCO2et-1. In 2022, the net greenhouse gas emissions from swine manure in China totaled approximately 2.0 × 107 tCO2e, with manure resource utilization reducing emissions by 3.2 × 107 tCO2e. Our projections suggest that emissions from swine manure in China may range from -1.8 × 107 to 1.3 × 107 tCO2e by 2025 and from -3.1 × 107 to 4.5 × 106 tCO2e by 2030. This can help guide optimal greenhouse gas emission reduction pathways for livestock and poultry farming and aid in the formulation of policies.
Collapse
Affiliation(s)
- Xuan Yu
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Green and Low Carbon Agriculture in North China Plain, Ministry of Agriculture and Rural Development, Beijing, 100081, China
| | - Lixin Zhao
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Green and Low Carbon Agriculture in North China Plain, Ministry of Agriculture and Rural Development, Beijing, 100081, China
| | - Zonglu Yao
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Green and Low Carbon Agriculture in North China Plain, Ministry of Agriculture and Rural Development, Beijing, 100081, China
| | - Yanan Zhao
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Green and Low Carbon Agriculture in North China Plain, Ministry of Agriculture and Rural Development, Beijing, 100081, China
| | - Jiadong Yu
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Green and Low Carbon Agriculture in North China Plain, Ministry of Agriculture and Rural Development, Beijing, 100081, China
| | - Jing Feng
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Green and Low Carbon Agriculture in North China Plain, Ministry of Agriculture and Rural Development, Beijing, 100081, China
| | - Juan Luo
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Green and Low Carbon Agriculture in North China Plain, Ministry of Agriculture and Rural Development, Beijing, 100081, China
| | - Liangguo Luo
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lili Huo
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Green and Low Carbon Agriculture in North China Plain, Ministry of Agriculture and Rural Development, Beijing, 100081, China.
| |
Collapse
|
3
|
Xiang Y, Lin W, Wei J, Yang F, Guo M, Li C, Li J, Wang F. Performance of carbon felt as cathodes in magnesium corrosion method to recover phosphate from swine wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123027. [PMID: 39454383 DOI: 10.1016/j.jenvman.2024.123027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
With the large-scale development of the livestock and poultry breeding industries, swine wastewater with high nitrogen and phosphorus concentrations has become an urgent problem. Given the continuous demand for phosphorus resources in industrial production, the study of phosphate recovery in phosphorus-rich wastewater is of great value for the sustainable utilization of phosphorus resources and for alleviating the eutrophication of aquatic ecosystems. In this study, a magnesium metal corrosion method was used to recover phosphorus resources from swine wastewater using carbon felt as the cathode instead of traditional cathode materials such as graphite and titanium plates. The effects of different cathode materials on the corrosion potential of magnesium metal plates were compared, and the effects of carbon felt as a cathode plate on the removal rate and pH of phosphate from wastewater were discussed. Additionally, the economic feasibility of phosphate recovery from swine wastewater was evaluated. The experimental results showed that the effect of carbon felt on the corrosion potential of the magnesium metal plate was more evident than that of the graphite and titanium plates (Ecorr = -1.74676). When carbon felt was used as the cathode plate, the most energy-saving reaction conditions were as follows: reaction time T = 30 min, ratio of wastewater volume to plate area V: S = 500 cm3:50 cm2, aeration rate Re = 8 L/min, stirring rate r = 400 rpm, phosphate recovery rate = 92.3%, and pH = 8.83. The economic feasibility assessment shows that the proposed method is $2.047 g-1 PO4-P without considering the reuse of carbon felt. Carbon felt has good stability and can be recycled eight times or more, and the proposed method achieves a more efficient phosphate recovery rate at a relatively low cost.
Collapse
Affiliation(s)
- Ying Xiang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, 39 College Road, Enshi, 445000, China
| | - Weike Lin
- School of Chemistry and Environmental Engineering, Hubei Minzu University, 39 College Road, Enshi, 445000, China
| | - Jinfeng Wei
- School of Chemistry and Environmental Engineering, Hubei Minzu University, 39 College Road, Enshi, 445000, China
| | - Fan Yang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, 39 College Road, Enshi, 445000, China
| | - Meng Guo
- School of Chemistry and Environmental Engineering, Hubei Minzu University, 39 College Road, Enshi, 445000, China
| | - Can Li
- School of Chemistry and Environmental Engineering, Hubei Minzu University, 39 College Road, Enshi, 445000, China
| | - Jin Li
- PKU-WUHAN Institute for Artificial Intelligence, 17-18F, Block A, Optics Valley Science and Technology Building, No. 770 Gaoxin Avenue, East Lake High-tech Development Zone, Wuhan, 430070, China
| | - Fang Wang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, 39 College Road, Enshi, 445000, China.
| |
Collapse
|
4
|
Xiao Z, Meng H, Li S, Ning W, Song Y, Han J, Chang JS, Wang Y, Ho SH. Insights into the removal of antibiotics from livestock and aquaculture wastewater by algae-bacteria symbiosis systems. ENVIRONMENTAL RESEARCH 2024; 257:119326. [PMID: 38849002 DOI: 10.1016/j.envres.2024.119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
With the burgeoning growth of the livestock and aquaculture industries, antibiotic residues in treated wastewater have become a serious ecological threat. Traditional biological wastewater treatment technologies-while effective for removing conventional pollutants, such as organic carbon, ammonia and phosphate-struggle to eliminate emerging contaminants, notably antibiotics. Recently, the use of microalgae has emerged as a sustainable and promising approach for the removal of antibiotics due to their non-target status, rapid growth and carbon recovery capabilities. This review aims to analyse the current state of antibiotic removal from wastewater using algae-bacteria symbiosis systems and provide valuable recommendations for the development of livestock/aquaculture wastewater treatment technologies. It (1) summarises the biological removal mechanisms of typical antibiotics, including bioadsorption, bioaccumulation, biodegradation and co-metabolism; (2) discusses the roles of intracellular regulation, involving extracellular polymeric substances, pigments, antioxidant enzyme systems, signalling molecules and metabolic pathways; (3) analyses the role of treatment facilities in facilitating algae-bacteria symbiosis, such as sequencing batch reactors, stabilisation ponds, membrane bioreactors and bioelectrochemical systems; and (4) provides insights into bottlenecks and potential solutions. This review offers valuable information on the mechanisms and strategies involved in the removal of antibiotics from livestock/aquaculture wastewater through the symbiosis of microalgae and bacteria.
Collapse
Affiliation(s)
- Zhihua Xiao
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Hao Meng
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weihao Ning
- Xinrui Environmental Protection Technology Co., Ltd, Yantai, 264000, China
| | - Youliang Song
- Shaoxing Academy of Agricultural Sciences, Shaoxing, 312003, China
| | - Jinglong Han
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Lian T, Yin F, Zhang W, Cao Q, Wang S, Zhou T, Zhang F, Li R, Dong H. Enhanced lactic acid production through enzymatic hydrolysis: Assessing impact of varied enzyme loadings on co-fermentation of swine manure and apple waste. BIORESOURCE TECHNOLOGY 2024; 406:131012. [PMID: 38908762 DOI: 10.1016/j.biortech.2024.131012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Anaerobic co-fermentation of swine manure (SM) and apple waste (AW) restricts by the slow hydrolysis of substrates with complex structures, which subsequently leads to low lactic acid (LA) production. Therefore, a novel strategy based on enzymatic pretreatment for improving LA production from anaerobic co-fermentation of SM and AW was proposed in this study. The results indicated that the maximal LA concentration increased from 35.89 ± 1.84 to 42.70 ± 2.18 g/L with the increase of enzyme loading from 0 to 300 U/g VSsubstrate. Mechanism exploration indicated that enzymatic pretreatment significantly promoted the release and hydrolysis of insoluble organic matter from fermentation substrate, thus providing an abundance of reaction intermediates that were directly available for LA production. Additionally, bacteria analysis revealed that the high concentration of LA was associated with the prevalence of Lactobacillus. This study offered an environmental-friendly strategy for promoting SM and AW hydrolysis and provided a viable approach for recovering valuable products.
Collapse
Affiliation(s)
- Tianjing Lian
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanqin Zhang
- China Huadian Engineering Co. Ltd., Beijing 100160, China
| | - Qitao Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fangyu Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Ding S, Li J, Wang Y, He S, Xie H, Fu H, Feng Y, Shaheen SM, Rinklebe J, Xue L. Manure derived hydrochar reduced phosphorus loss risk via an alteration of phosphorus fractions and diversified microbial community in rice paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170582. [PMID: 38309349 DOI: 10.1016/j.scitotenv.2024.170582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Phosphorus (P) loss caused by the irrational use of manure organic fertilizer has become a worldwide environmental problem, which has caused a potential threat to water safety and intensified agricultural non-point source pollution. Hydrothermal carbonization is method with a low-energy consumption and high efficiency to deal with environmental problems. Application of pig manure-derived hydrochar (PMH) to soil exhibited potential of sustainable development compared with the pristine pig manure (PM). However, the effects of PMH on the distribution of P among the fractions/forms and the interaction between microorganisms and P forms and its relevance to the potential loss of P in paddy fields has not been clarified. Therefore, in this study, a soil column experiment was conducted using the untreated soil (control), and the PM, PMH1 (PMH derived at 180 °C), and PMH2 (PMH derived at 260 °C) treated soils (at the dose of 0.05 %) and rice was cultivated to investigate the effects of PM and PMH on the P fractions, mobilization, ad potential loss via the induced changes on soil microbial community after a complete growing season of rice. The trend of P utilization was evaluated by P speciation via continuous extraction and 31P NMR. The addition of PMH reduced the proportion of residual P in soil by 23.8-26.3 %, and increased the proportion of HCl-P and orthophosphate by 116.2-158.6 % and 6.1-6.8 % compared to PM. The abundance of gcd gene developed after the application of PMH2, which enhanced the mobile forms of soil P utilization via secreting gluconic acid. The network diagram analysis concluded that the changes in various P forms were mainly related to Proteobacteria, Bacteroides, Firmicutes and Acidobacteria. The results illustrated that PMH mitigate the potential risk of P loss more than PM by altering P fractions and affecting soil microbial community.
Collapse
Affiliation(s)
- Shudong Ding
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Li
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yu Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shiying He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haibin Fu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
7
|
Wu H, Liu Y, Dai C, Ye Y, Zhu H, Fang W. Life-cycle comparisons of economic and environmental consequences for pig production with four different models in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21668-21686. [PMID: 38393572 DOI: 10.1007/s11356-024-32541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
China, the world's largest consumer and producer of pork in the world, is attracting increasing attention due to the environmental impacts of its pig production. Previous studies seldom comprehensively compare the environmental impacts of the pig production system with different models, resulting in different intensities of environmental impacts. We aim to comprehensively evaluate Chinese pig production with different breeding models and explore a more sustainable way for pig production. We use life cycle assessment (LCA) to evaluate and compare environmental impacts of pig production system with four main breeding models in China from 1998 to 2020: domestic breeding, small-scale breeding, medium-scale breeding, and large-scale breeding. The life cycle encompasses fertilizer production, feed production, feed processing, pig raising, waste treatment, and slaughtering. The impact categories including energy consumption (EN), global warming (GWP), acidification (AP), eutrophication (EU), water use (WD), and land occupation (LO) are expressed with "100 kg live weight of fattening pig at farm gate." The results show that driven by governmental support, growing meat demand, and cost advantage, the scale breeding especially large-scale breeding simultaneously yielded greater net economic benefit and less environmental impact compared to other breeding models especially the domestic breeding. Due to mineral fertilizer application, feed production contributed over 50% of the total environmental impacts. Notably, the composition of feeds exerted significant influence on the environmental impacts arising from fertilizer production and feed processing. Furthermore, attributable to the substantial use of electricity and heat, as well as the concomitant emissions, pig raising contributed the largest GWP, while ranking second in terms of AP and EU. Notably, waste management constituted the third-largest EU, AP, and WD. In addition to promote scale breeding, we put forth several sustainable measures encompassing feed composition, cultivation practices, fertilizer utilization, and waste management for consideration.
Collapse
Affiliation(s)
- Huijun Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Yongxin Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Chengjuan Dai
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yuanyuan Ye
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Huimin Zhu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Weixin Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|