1
|
Zhou L, Chen J, Qian Y, Zhang Y, Batjargal E, Tuulaikhuu BA, Zhou X. Unlocking phosphorus recovery from microalgae biomass: The enhanced transformation and release of phosphorus species. WATER RESEARCH 2025; 275:123196. [PMID: 39889442 DOI: 10.1016/j.watres.2025.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
The intertwined challenges of harmful algae blooms and the phosphorus (P) resource crisis have necessitated the recovery of P from algae biomass. For the first time, a co-pyrolysis strategy that incorporates NaHCO3 into the pyrolysis process of chlorella to efficiently recover P in the form of vivianite was proposed. The findings demonstrated that the addition of 20 wt.% NaHCO3 during pyrolysis significantly enhanced P extraction from biochar, increasing the extraction efficiency from 2.8 % to 94.37 %. A complementary array of techniques including chemical extraction, nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), as well as two-dimensional correlation spectroscopy (2D-COS), was employed to elucidate the transformation of hard-to-extract P in chlorella to easy-to-extract P during pyrolysis. It was observed that organophosphorus (OP), pyrophosphate (pyro-P), and polyphosphates (poly-P) reacted with NaHCO3 at 700 °C, undergoing depolymerization and hydrolysis, which led to the formation of orthophosphate (ortho-P) species (e.g., Na3PO4, NaCa(PO4)3, (Fe2(PO4)3), accounting for 98.88 % of the P species in biochar product. High-purity vivianite (∼98.13 %) was subsequently obtained without the need for impurity removal, as indicated by chemical equilibrium simulations, due to the minimal ions and dissolved organic matter (DOM) present in the leaching solution, a consequence of the simple and pure structure of microalgae biomass. The estimated economic profit of this strategy is $1.51 per kilogram of dry chlorella. Additionally, the resulting biochar exhibited a high surface area (518.40 m2/g) and a well-developed pore structure, make it a promising material for adsorption and catalytic applications. This study provides a novel perspective for addressing the P crisis while effectively mitigating harmful algal blooms.
Collapse
Affiliation(s)
- Liling Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resource, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Egshiglen Batjargal
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Baigal-Amar Tuulaikhuu
- School of Agroecology, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Huang Y, Wu Q, Yan J, Chu F, Xu Y, Li D, Zhang H, Yang S. Efficient removal and recovery of phosphate by biochar loaded with ultrafine MgO nanoparticles. ENVIRONMENTAL RESEARCH 2025; 266:120518. [PMID: 39638027 DOI: 10.1016/j.envres.2024.120518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Biochar loaded with MgO is a promising adsorbent for the removal and recovery of phosphate from aqueous solutions. However, its phosphate adsorption capacity is unsatisfactory, especially at low phosphate concentrations. Loading nanoscale MgO onto biochar is an effective strategy. Here, ultrafine MgO nanoparticles and MgO nanosheets were loaded onto biochar from steam-exploded straw (UMB and SMB) via an impregnation-precipitation-pyrolysis method. The crystal sizes of ultrafine MgO nanoparticles and MgO nanosheets were about 6-8 nm and 10-16 nm, respectively. The phosphate adsorption capacity of UMB at C0 = 100 mg P L-1 was 219.4 mg P g-1, which was higher than that of SMB (164.9 mg P g-1). The results suggest that surface precipitation was the dominant adsorption mechanism and the hydration process and the smaller particle size of MgO may play a key role in the superior phosphate removal by UMB. Removal tests in real low-concentration phosphate water samples showed that 0.05 g L-1 UMB could reduce the phosphate concentration from 0.17 mg P L-1 to 0.01 mg P L-1. In addition, phosphate could be desorbed from UMB in varying environments, and therefore has the potential to be used in fertilizer production or directly as a slow-release fertilizer.
Collapse
Affiliation(s)
- Yanpeng Huang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingfan Yan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fumin Chu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuming Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongmin Li
- COFCO Nutrition and Health Research Institute, Beijing, 102209, China
| | - Hongjia Zhang
- COFCO Nutrition and Health Research Institute, Beijing, 102209, China
| | - Sen Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Yang C, Li Q, Chen X, Li M, He X, Li G, Shao Y, Wu J. Effects of the combined use of lanthanum carbonate and activated carbon capping materials on phosphorus and dissolved organic matter in lake sediments. ENVIRONMENTAL RESEARCH 2025; 264:120291. [PMID: 39505129 DOI: 10.1016/j.envres.2024.120291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Lanthanum carbonate (LC) represents a novel material for the immobilization of internal phosphorus (P) in sediments. Activated carbon (AC) is a traditional adsorbent that has been employed in the remediation of sediments on a wide scale. The objective of this study is to examine the mechanisms and effects of the combined use of LC and AC capping materials on the immobilization of P and dissolved organic matter (DOM) in sediments, through a 90-day incubation experiment. The results of isotherm experiments showed that the adsorption mechanism of P on LC and AC was mainly chemisorption. The XPS analyses showed the adsorption mechanism of P on LC was mainly ligand exchange and inner-sphere complexation; while the adsorption mechanism of P on AC was mainly ligand exchange and electrostatic adsorption. The results demonstrated that the concentrations of soluble reactive phosphorus (SRP) and DOM in the 0 to -100 mm sediment layer were reduced by 69.79% and 33.93%, respectively, in comparison to the control group with the LC + AC group. Moreover, the HCl-P and Res-P (stable P) in the 0-5 cm sediment layer were increased by 50.07% and 21.04%, respectively, in the LC + AC group. This indicates that the combined application of LC and AC has the potential to reduce the risk of P release. Furthermore, the formation of Fe(III)/Mn(IV) oxyhydroxides by LC + AC treatment resulted in an increased adsorption of SRP and DOM. Moreover, the effect of LC + AC capping on microbial community was smaller than that of LC/AC capping alone. The findings of this study indicated that the combined use of LC and AC represents a novel approach to the effective treatment of internal P and DOM in eutrophic lake sediments.
Collapse
Affiliation(s)
- Chenjun Yang
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Qi Li
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China.
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Minjuan Li
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Xiangyu He
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Gaoxiang Li
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Yichun Shao
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| | - Jingwei Wu
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| |
Collapse
|
4
|
Yang M, Zhang T, Zhou X, Jin C, You X, Zhang L, Yang Y, Kong Z, Chu H, Zhang Y. New insight into the spatio-temporal patterns of functional groups of hotspot inside the composting aggregates by synchrotron-based FTIR in hyperthermophilic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174139. [PMID: 38901577 DOI: 10.1016/j.scitotenv.2024.174139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Hyperthermophilic composting (HTC) is a recently developed and highly promising organic fraction of municipal solid waste (OFMSW) treatment technology. Investigation of organic matter (OM) dynamics in compost particle is thus crucial for the understanding of humification of HTC process. Herein, this work aimed to study the chemical and structural changes of OM at the molecular level during HTC of OFMSW using EEM and SR-FTIR analyses. Additionally, two-dimensional correlation spectroscopy (2D-COS) was also utilized to probe and identify the changes in chemical constituents and functional groups of organic compounds on the surface of compost particles during different composting periods. Results show that SR-FTIR can detect fine-scale (~μm) changes in functional groups from the edges to the interior of compost particles during different composting periods by mapping the particles in situ. In the hyperthermophilic stage (day 9), the extracted μ-FTIR spectrum reveals a distinct boundary between anaerobic and aerobic regions within the compost particle, with a thickness of anaerobic zone (1460 cm-1) of approximately 30 μm inside the particle's core. This provides direct evidence of anaerobic trends at compost microscales level within compost particles. 2D-COS analysis indicated that organic functional groups gradually agglomerated in the order of 1330 > 2930 > 3320 > 1600 > 1030 > 895 cm-1 to the core skeleton of cellulose degradation residues, forming compost aggregates with well physicochemical properties. Overall, the first combination of SR-FTIR and EEM provides complementary explanations for the humification mechanism of HTC, potentially introducing a novel methodology for investigating the environmental behaviors and fates of various organic contaminants associated with OM during the in-situ composting biochemical process.
Collapse
Affiliation(s)
- Mingchao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Tao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Chenxi Jin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaogang You
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Lei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yinchuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China
| |
Collapse
|
5
|
Lee G, Kim C, Park C, Ryu BG, Hong HJ. High-carbon-content biochar from chemical manufacturing plant sludge for effective removal of ciprofloxacin from aqueous media. CHEMOSPHERE 2024; 364:143118. [PMID: 39154771 DOI: 10.1016/j.chemosphere.2024.143118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Biochar is considered a promising biosorbent for harmful organic pollutants in aqueous media. However, only a limited number of biochars derived from industrial sludges have been utilized due to their problematic high ash content and heavy metal leaching. In this study, a highly effective biochar was prepared as a superabsorbent for ciprofloxacin (CIP) from chemical manufacturing plant sludge via K2CO3-activated pyrolysis, and its CIP removal behavior was evaluated. Unlike sewage sludge, chemical manufacturing plant sludge contains low SiO2, resulting in an ultra-pure carbon (95.4%) based biochar with almost negligible ash content. As the pyrolysis temperature increased from 400 to 800 °C, the ordered graphitic carbon structure transformed into an amorphous carbon phase, and most oxygen-containing groups disappeared. However, the pore size significantly decreased to ∼4.5 nm due to the corrosive carbon volatilization caused by K2CO3, resulting in an extremely large surface area of 2331.8 m2/g. Based on its large surface area and porous carbon structure, the activated biochar at 800 °C (CAB-800) exhibited an outstanding CIP adsorption capacity of 555.56 mg/g. The CIP adsorption isotherm, kinetic, and thermodynamic studies were systematically investigated. The CIP adsorption on CAB-800 was mainly attributed to π-π interactions and hydrogen bond formation, with electrostatic interactions partially contributing to the adsorption reaction. From pH 2 to 12, CAB-800 showed an excellent CIP adsorption capacity of over 316.7 mg/g, with adsorption favored under acidic conditions. Except for HCO3- and CO32-, the presence of anions and humic acids did not significantly affect CIP adsorption capacity. These results demonstrate that biochar produced from chemical manufacturing industry sludge via K2CO3 activation is a highly feasible material for the removal of CIP from aqueous media.
Collapse
Affiliation(s)
- Gyubin Lee
- Department of Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Chaelin Kim
- Department of Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Chaerin Park
- Department of Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Byong-Gon Ryu
- Using Technology Deveploment Department, Bio-Resources Research Division Nakdonggang National Institute of Biological Resources, 137, Donam 2-gil, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea.
| | - Hye-Jin Hong
- Department of Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
6
|
He D, Zhang Z, Zhang W, Zhang H, Liu J. Municipal sludge biochar skeletal sodium alginate beads for phosphate removal. Int J Biol Macromol 2024; 261:129732. [PMID: 38280708 DOI: 10.1016/j.ijbiomac.2024.129732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
A novel Fe/La decorative biochar filled in sodium alginate beads (SA-KBC-Fe/La) was prepared by a simple sol-gel method and applied to adsorb phosphate (P) efficiently from water in this study. The morphology, structure and chemical component of the hydrogel beads were characterized in detail. And the synthesized bead exhibited easy separation and high P uptake of 46.65 mg/g when the Fe: La was of 1: 2 at 298 K with initial P of 100 mg/L, which was much higher than SA gel bead. The adsorption showed that the optimal pH was 6, and the adsorption was met with pseudo-second-order kinetics and Langmuir isothermal models, indicating a chemical adsorption process. The adsorption capacity remained 82 % after 5 cycles of adsorption. The adsorption mechanism of P was mainly of ligand exchange and electrostatic attraction. Compared with other reported adsorbents, the modification of Fe/La could enhance the mechanical property of SA-KBC-Fe/La beads with increasing active sites. Additionally, the involved biochar could lead to excellent thermal stability and hierarchical porous structure of beads with larger specific surface area (54.22 m2/g). The study could provide new ideas for P removal and strategy for the final disposal of municipal sludge.
Collapse
Affiliation(s)
- Dandan He
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Zeyu Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China
| | - Wenbo Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Hong Zhang
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| | - Juanli Liu
- School of Chemical Engineering, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Northwest Minzu University, Lanzhou 730030, China.
| |
Collapse
|
7
|
Meina L, Qiao M, Zhang Q, Xu S, Wang D. Study on the dynamic adsorption and recycling of phosphorus by Fe-Mn oxide/mulberry branch biochar composite adsorbent. Sci Rep 2024; 14:1235. [PMID: 38216644 PMCID: PMC10786881 DOI: 10.1038/s41598-024-51416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
In this study, the Fe-Mn oxide/mulberry stem biochar composite adsorbent (FM-MBC) was prepared and fully characterized by SEM-EDS, XRD, BET, and XPS. The solution pH (3.0, 4.5, and 6.0), initial concentration of phosphorus (10, 20, and 30 mg L-1), adsorbent bed height (2, 3, and 4 cm), and solution flow rate (1, 2, and 3 mL min-1) were investigated to analyze the breakthrough curves. The results showed that the breakthrough time was shortened as the initial phosphorus concentration, the flow rate increased and the bed height decreased. Higher initial phosphorus concentrations, flow rates, and lower bed heights, led to a faster breakthrough of phosphate ions in the FM-MBC adsorbent. Additionally, it was observed that increasing the pH value was not conducive to the adsorption of phosphorus by the FM-MBC adsorbent. Dynamic adsorption data were fitted to four models (Yoon-Nelson, Thomas, Adams-Bohart, and Bed Depth Service Time), and the R2 values of the Thomas and Yoon-Nelson models exhibited minimal variation, suggesting that the dynamic adsorption process of FM-MBC was rather intricate. The saturated fixed-bed column (including FM-MBC) was regenerated with NaOH or HCl, and it was found that a 0.1 mol L-1 NaOH solution had the best regeneration effect. XRD analysis showed that the reaction product between the FM-MBC composite and phosphate anions was Fe3(PO4)2·H2O. Moreover, the experimental results that FM-MBC can successfully be used to remove phosphorus from actual wastewater.
Collapse
Affiliation(s)
- Liang Meina
- School of Envormental Science and Engneering, Guilin Unversity of Technology, Guilin, 541004, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin, 541004, People's Republic of China
| | - Mushi Qiao
- School of Envormental Science and Engneering, Guilin Unversity of Technology, Guilin, 541004, People's Republic of China
| | - Qing Zhang
- School of Envormental Science and Engneering, Guilin Unversity of Technology, Guilin, 541004, People's Republic of China.
| | - Shuiping Xu
- School of Envormental Science and Engneering, Guilin Unversity of Technology, Guilin, 541004, People's Republic of China
| | - Dunqiu Wang
- School of Envormental Science and Engneering, Guilin Unversity of Technology, Guilin, 541004, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Area, Guilin, 541004, People's Republic of China
| |
Collapse
|
8
|
Hong Y, Yang L, You X, Zhang H, Xin X, Zhang Y, Zhou X. Effects of light quality on microalgae cultivation: bibliometric analysis, mini-review, and regulation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31192-2. [PMID: 38015404 DOI: 10.1007/s11356-023-31192-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
The ever-increasing concern for energy shortages and greenhouse effect has triggered the development of sustainable green technologies. Microalgae have received more attention due to the characteristics of biofuel production and CO2 fixation. From the perspective of autotrophic growth, the optimization of light quality has the potential to promote biomass production and bio-component accumulation in microalgae at low cost. In this study, bibliometric analysis was used to describe the basic features, identify the hotspots, and predict future trends of the research related to the light quality on microalgae cultivation. In addition, a mini-review referring to regulation methods of light quality was provided to optimize the framework of research. Results demonstrated that China has the greatest interest in this area. The destination of most research was to obtain biofuels and high-value-added products. Both blue and red lights were identified as the crucial spectrums for microalgae cultivation. However, sunlight is the most affordable light resource, which could not be fully utilized by microalgae through the photosynthetic process. Hence, some regulation approaches (e.g., dyes, plasmonic scattering, and carbon-based quantum dots) are proposed to increase the proportion of beneficial spectrum for enhancement of photosynthetic efficiency. In summary, this review introduces state-of-the-art research and provides theoretical guidance for light quality optimization in microalgae cultivation to obtain more benefits.
Collapse
Affiliation(s)
- Yongyuan Hong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Xiaogang You
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Haigeng Zhang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200092, China
| | - Xiaying Xin
- Department of Civil Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|