1
|
Kolesnikov AE, Egorova KS, Ananikov VP. Integrated toxicity assessment of complex chemical mixtures in catalytic reactions. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137784. [PMID: 40024119 DOI: 10.1016/j.jhazmat.2025.137784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Catalytic cross-coupling reactions, such as the Mizoroki-Heck reaction, play a crucial role in synthetic chemistry but pose significant environmental and health risks due to the toxicity of reaction components and their mixtures. In this study, we conducted a comprehensive cytotoxicity assessment of individual substances and complex reaction mixtures at different stages of the Mizoroki-Heck reaction. We demonstrate that the cytotoxicity of these mixtures often deviates from predictions on the basis of individual components due to synergistic and antagonistic interactions, with chlorobenzene-containing mixtures mostly exhibiting the lowest toxicity. Furthermore, our findings suggest that noncovalent interactions, including halogen bonding and π-stacking, significantly influence cytotoxicity. Notably, incomplete conversion of the reactants leads to an increase in mixture toxicity, emphasizing the importance of optimizing the reaction conditions. This study underscores the necessity of revising current chemical safety assessment strategies to account for complex molecular interactions in catalytic reactions.
Collapse
Affiliation(s)
- Andrey E Kolesnikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Ren Y, Wang Y, Wang Y, Ning X, Li G, Sang N. Exposure to oxygenated polycyclic aromatic hydrocarbons and endocrine dysfunction: Multi-level study based on hormone receptor responses. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136855. [PMID: 39700954 DOI: 10.1016/j.jhazmat.2024.136855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of emerging environmental contaminants that exhibit high toxicity compared to parent PAHs. In addition to carcinogenic, teratogenic and mutagenic effects, recent studies show their potential to cause endocrine disruption, but the reports are controversial. In this study, we employed hormone receptors (ERα/AR/GRα/TRβ)-mediated dual luciferase reporter gene assay and molecular docking, and found that five typical OPAHs exhibited agonistic activity towards hormone receptors, and hydrogen bonding and hydrophobic interactions were the primary binding forces involved in OPAHs-receptor interactions. Then, we developed a weighted scoring system coupled with computerized screening and clarified that 1,2-benzanthraquinone (BAQ) had the strongest hormonal effects, while anthraquinone (AQ) exhibited the weakest effects. Using the in vivo exposure model, we clarified that BAQ induced hormone receptor-coupled developmental toxicity in zebrafish larvae, evidenced by increased expression of androgen receptors and key genes involved in hormone synthesis, pericardial edema and reduced body length. Importantly, we successfully constructed androgen response element-enhanced green fluorescent protein (ARE-EGFP) transient transfection zebrafish embryos, and confirmed the androgenic potency of BAQ, but not AQ. These findings highlight the endocrine-disrupting effects in the risk management of OPAHs.
Collapse
Affiliation(s)
- Ying Ren
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yue Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Taiyuan, Shanxi 030600, PR China
| | - Yang Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xia Ning
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Resources and Environmental Engineering, Shanxi Institute of Energy, Taiyuan, Shanxi 030600, PR China
| |
Collapse
|
3
|
Le Du-Carrée J, Palacios CK, Rotander A, Larsson M, Alijagic A, Kotlyar O, Engwall M, Sjöberg V, Keiter SH, Almeda R. Cocktail effects of tire wear particles leachates on diverse biological models: A multilevel analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134401. [PMID: 38678714 DOI: 10.1016/j.jhazmat.2024.134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Tire wear particles (TWP) stand out as a major contributor to microplastic pollution, yet their environmental impact remains inadequately understood. This study delves into the cocktail effects of TWP leachates, employing molecular, cellular, and organismal assessments on diverse biological models. Extracted in artificial seawater and analyzed for metals and organic compounds, TWP leachates revealed the presence of polyaromatic hydrocarbons and 4-tert-octylphenol. Exposure to TWP leachates (1.5 to 1000 mg peq L-1) inhibited algae growth and induced zebrafish embryotoxicity, pigment alterations, and behavioral changes. Cell painting uncovered pro-apoptotic changes, while mechanism-specific gene-reporter assays highlighted endocrine-disrupting potential, particularly antiandrogenic effects. Although heavy metals like zinc have been suggested as major players in TWP leachate toxicity, this study emphasizes water-leachable organic compounds as the primary causative agents of observed acute toxicity. The findings underscore the need to reduce TWP pollution in aquatic systems and enhance regulations governing highly toxic tire additives.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- University of Las Palmas de Gran Canaria: Las Palmas de Gran Canaria, Spain.
| | - Clara Kempkens Palacios
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Anna Rotander
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden; Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Viktor Sjöberg
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Rodrigo Almeda
- University of Las Palmas de Gran Canaria: Las Palmas de Gran Canaria, Spain
| |
Collapse
|
4
|
Guo Z, Wang M, Pan Y, Lu H, Pan S. Ecological assessment of stream water polluted by phosphorus chemical plant: Physiological, biochemical, and molecular effects on zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2024; 247:118173. [PMID: 38224935 DOI: 10.1016/j.envres.2024.118173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The rapid development of the phosphorus chemical industry has caused serious pollution problems in the regional eco-environment. However, understanding of their ecotoxic effects remains limited. This study aimed to investigate the developmental toxicity of a stream polluted by a phosphorus chemical plant (PCP) on zebrafish embryos. For this, zebrafish embryos were exposed to stream water (0, 25, 50, and 100% v/v) for 96 h, and developmental toxicity, oxidative stress, apoptosis, and DNA damage were assessed. Stream water-treated embryos exhibited decreased hatching rates, heart rates, and body lengths, as well as increased mortality and malformation rates. The general morphology score system indicated that the swim bladder and pigmentation were the main abnormal morphological endpoints. Stream water promoted antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and glutathione peroxidase (GPx)), lipid peroxidation, and DNA damage. It also triggered apoptosis in the embryos' heads, hearts, and spines by activating apoptotic enzymes (Caspase-3 and Caspase-9). Additionally, stream water influenced growth, oxidative stress, and apoptosis-related 19 gene expression. Notably, tyr, sod (Mn), and caspase9 were the most sensitive indicators of growth, oxidative stress, and apoptosis, respectively. The current trial concluded that PCP-polluted stream water exhibited significant developmental toxicity to zebrafish embryos, which was regulated by the oxidative stress-mediated activation of endogenous apoptotic signaling pathways.
Collapse
Affiliation(s)
- Ziyu Guo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Min Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongliang Lu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| | - Sha Pan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 561113, China.
| |
Collapse
|