1
|
Yang P, Sun D, Liu W, Liu K, Yang H, Tong C, Zhang L, Lin Y, Lai DYF, Tan L, Chen W, Tang KW. Use of biochar derived from Spartina alterniflora to reduce sediment methane (CH 4) production potential during non-farming period in earthen aquaculture ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125575. [PMID: 39725207 DOI: 10.1016/j.envpol.2024.125575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/05/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Biochar has been proposed as an effective material for mitigating greenhouse gas emissions from farmlands, but comparable information for earthen aquaculture ponds is limited. A field study was conducted to investigate the effects of adding biochar (200-1600 kg ha-1) derived from the invasive plant Spartina alterniflora on sediment physico-chemical properties, CH4 production potential (PCH4), and the relevant functional gene abundances in earthen aquaculture ponds during the non-farming period. The results indicated that biochar treatments increased sediment porosity and salinity, while decreasing dissolved organic carbon and microbial biomass carbon. Biochar-treated sediments also exhibited a significantly lower abundance of mcrA gene especially in the early drainage stage, and a higher abundance of pmoA gene especially in the intermediate and final drainage stages. Consequently, the mean PCH4 in biochar-treated sediments (1.28-21.12 ng g-1 d-1) was 57-73% lower than in the control group (5.41-39.45 ng g-1 d-1). The reduction in PCH4 did not differ between biochar produced at 300 °C vs. 500 °C and was not dependent on the amount of biochar added. The findings suggest that using biochar derived from S. alterniflora can be a cost-effective method to control the spread of this invasive plant and reduce CH4 production in aquaculture pond sediment during the non-farming period.
Collapse
Affiliation(s)
- Ping Yang
- Institute of Geography, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, 350117, China.
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenjing Liu
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Kaiyuan Liu
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
| | - Chuan Tong
- Institute of Geography, Fujian Normal University, Fuzhou, 350117, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Linhai Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yongxin Lin
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, 350117, China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Lishan Tan
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Weifeng Chen
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Kam W Tang
- Department of Life Sciences, Texas A&M University-Corpus Christi, TX, 78412, USA.
| |
Collapse
|
2
|
Patro A, Dwivedi S, Thakur A, Sahoo PK, Biswas JK. Recent approaches and advancement in biochar-based environmental sustainability: Is biochar fulfilling the sustainable development goals? iScience 2024; 27:110812. [PMID: 39310752 PMCID: PMC11416529 DOI: 10.1016/j.isci.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
This review highlights the application of biochar (BC) for attaining different SDGs (SDG 6: clean water and sanitation, SDG 7: affordable and clean energy, SDG 13: climate action, and SDG 15: life on land). These goals coincide with the various existing environmental problems including wastewater treatment, soil amendment, greenhouse gas remediation, and bioenergy generation. So, the review encompasses the various mechanisms involved in the BC-assisted treatment and reclamation of water, pollutant immobilization and enhancing soil properties, reduction of greenhouse gas emission during the wastewater treatment process and soil amendment mechanisms, bioenergy generation through various electrode material, biodiesel production, and many more. The review also explains the various drawbacks and limitations of BC application to the available environmental issues. Conclusively, it was apprehended that BC is an appropriate material for several environmental applications. More research interventions are further required to analyze the applicability of different BC materials for attaining other available SDGs.
Collapse
Affiliation(s)
- Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Anjali Thakur
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| |
Collapse
|
3
|
Irewale AT, Dimkpa CO, Elemike EE, Oguzie EE. Water hyacinth: Prospects for biochar-based, nano-enabled biofertilizer development. Heliyon 2024; 10:e36966. [PMID: 39281463 PMCID: PMC11401212 DOI: 10.1016/j.heliyon.2024.e36966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The widespread proliferation of water hyacinth (Eichhornia crassipes) in aquatic ecosystems has raised significant ecological, environmental, and socioeconomic concerns globally. These concerns include reduced biodiversity, impeded water transportation and recreational activities, damage to marine infrastructure, and obstructions in power generation dams and irrigation systems. This review critically evaluates the challenges posed by water hyacinth (WH) and investigates potential strategies for converting its biomass into value-added agricultural products, specifically nanonutrients-fortified, biochar-based, green fertilizer. The review examines various methods for producing functional nanobiochar and green fertilizer to enhance plant nutrient uptake and improve soil nutrient retention. These methods include slow or fast pyrolysis, gasification, laser ablation, arc discharge, or chemical precipitation used for producing biochar which can then be further reduced to nano-sized biochar through ball milling, a top-down approach. Through these means, utilization of WH-derived biomass in economically viable, eco-friendly, sustainable, precision-driven, and smart agricultural practices can be achieved. The positive socioeconomic impacts of repurposing this invasive aquatic plant are also discussed, including the prospects of a circular economy, job creation, reduced agricultural input costs, increased agricultural productivity, and sustainable environmental management. Utilizing WH for nanobiochar (or nano-enabled biochar) for green fertilizer production offers a promising strategy for waste management, environmental remediation, improvement of waterway transportation infrastructure, and agricultural sustainability. To underscore the importance of this work, a metadata analysis of literature carried out reveals that an insignificant section of the body of research on WH and biochar have focused on the nano-fortification of WH biochar for fertilizer development. Therefore, this review aims to expand knowledge on the upcycling of non-food crop biomass, particularly using WH as feedstock, and provides crucial insights into a viable solution for mitigating the ecological impacts of this invasive species while enhancing agricultural productivity.
Collapse
Affiliation(s)
- Adewale T Irewale
- Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511 United States
| | - Elias E Elemike
- Department of Chemistry, Federal University of Petroleum Resources Effurun, Nigeria
| | - Emeka E Oguzie
- Africa Center of Excellence in Future Energies and Electrochemical Systems (ACEFUELS), Federal University of Technology, Owerri, Nigeria
| |
Collapse
|
4
|
Zhao M, Tian X, Wang Y, Wang X, Ciais P, Jin Z, Zhang H, Wang T, Ding J, Piao S. Slowdown in China's methane emission growth. Natl Sci Rev 2024; 11:nwae223. [PMID: 39262925 PMCID: PMC11389614 DOI: 10.1093/nsr/nwae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/13/2024] [Accepted: 06/19/2024] [Indexed: 09/13/2024] Open
Abstract
The unprecedented surge in global methane levels has raised global concerns in recent years, casting a spotlight on China as a pivotal emitter. China has taken several actions to curb the methane emissions, but their effects remain unclear. Here, we developed the Global ObservatioN-based system for monitoring Greenhouse GAses for methane (GONGGA-CH4) and assimilate GOSAT XCH4 observations to assess changes in China's methane emissions. We find the average rate of increase in China's methane emissions (0.1 ± 0.3 Tg CH4 yr-2) during 2016-2021 slowed down compared to the preceding years (2011-2015) (0.9 ± 0.5 Tg CH4 yr-2), in contrast to the concurrent acceleration of global methane emissions. As a result, the contribution of China to global methane emissions dropped significantly. Notably, the slowdown of China's methane emission is mainly attributable to a reduction in biogenic emissions from wetlands and agriculture, associated with the drying trend in South China and the transition from double-season to single-season rice cropping, while fossil fuel emissions are still increasing. Our results suggest that GONGGA-CH4 provides the opportunity for independent assessment of China's methane emissions from an atmospheric perspective, providing insights into the implementation of methane-related policies that align with its ambitious climate objectives.
Collapse
Affiliation(s)
- Min Zhao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangjun Tian
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yilong Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette 91191, France
| | - Zhe Jin
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Carbon Neutrality, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongqin Zhang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinzhi Ding
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilong Piao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Carbon Neutrality, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
SaberiKamarposhti M, Ng KW, Yadollahi M, Kamyab H, Cheng J, Khorami M. Cultivating a sustainable future in the artificial intelligence era: A comprehensive assessment of greenhouse gas emissions and removals in agriculture. ENVIRONMENTAL RESEARCH 2024; 250:118528. [PMID: 38403150 DOI: 10.1016/j.envres.2024.118528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Agriculture is a leading sector in international initiatives to mitigate climate change and promote sustainability. This article exhaustively examines the removals and emissions of greenhouse gases (GHGs) in the agriculture industry. It also investigates an extensive range of GHG sources, including rice cultivation, enteric fermentation in livestock, and synthetic fertilisers and manure management. This research reveals the complex array of obstacles that are faced in the pursuit of reducing emissions and also investigates novel approaches to tackling them. This encompasses the implementation of monitoring systems powered by artificial intelligence, which have the capacity to fundamentally transform initiatives aimed at reducing emissions. Carbon capture technologies, another area investigated in this study, exhibit potential in further reducing GHGs. Sophisticated technologies, such as precision agriculture and the integration of renewable energy sources, can concurrently mitigate emissions and augment agricultural output. Conservation agriculture and agroforestry, among other sustainable agricultural practices, have the potential to facilitate emission reduction and enhance environmental stewardship. The paper emphasises the significance of financial incentives and policy frameworks that are conducive to the adoption of sustainable technologies and practices. This exhaustive evaluation provides a strategic plan for the agriculture industry to become more environmentally conscious and sustainable. Agriculture can significantly contribute to climate change mitigation and the promotion of a sustainable future by adopting a comprehensive approach that incorporates policy changes, technological advancements, and technological innovations.
Collapse
Affiliation(s)
- Morteza SaberiKamarposhti
- Faculty of Computing and Informatics (FCI), Multimedia University, Persiaran Multimedia, Cyberjaya, 63100, Selangor, Malaysia; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Kok-Why Ng
- Faculty of Computing and Informatics (FCI), Multimedia University, Persiaran Multimedia, Cyberjaya, 63100, Selangor, Malaysia.
| | - Mehdi Yadollahi
- Department of Computer Engineering, Islamic Azad University, Ayatollah Amoli Branch, Amol, Mazandaran, Iran
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| | - Jie Cheng
- Suzhi Education Research Center, School of International Education, Anhui Xinhua University, Hefei, 230088, China.
| | - Majid Khorami
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador
| |
Collapse
|