1
|
Zheng H, Yin Z, Chen L, He H, Li Z, Lv X, Chen J, Du W, Lin X. Effects of salinity on nitrogen reduction pathways in estuarine wetland sediments. MARINE POLLUTION BULLETIN 2024; 207:116834. [PMID: 39142052 DOI: 10.1016/j.marpolbul.2024.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Denitrification, anammox, and DNRA are three important nitrogen (N) reduction pathways in estuarine sediments. Although salinity is an important variables controlling microbial growth and activities, knowledge about the effects of changing salinity on those three processes in estuarine and coastal wetland sediments are not well understood. Herein, we performed a 60-d microcosms experiment with different salinities (0, 5, 15, 25 and 35 ‰) to explore the vital role of salinity in controlling N-loss and N retention in estuarine wetland sediments. The results showed that sediment organic matter, sulfide, and nitrate (NO3-) were profoundly decreased with increasing salinity, while sediment ammonium (NH4+) and ferrous (Fe2+) varied in reverse patterns. Meanwhile, N-loss and N retention rates and associated gene abundances were differentially inhibited with increasing salinity, while the contributions of denitrification, anammox, and DNRA to total nitrate reduction were apparently unaffected. Moreover, denitrification rate was the most sensitive to salinity, and then followed by DNRA, while anammox was the weakest among these three processes. In other words, anammox bacteria showed a wide range of salinity tolerance, while both denitrification and DNRA reflected a relatively limited dynamic range of it. Our findings could provide insights into temporal interactive effects of salinity on sediment physico-chemical properties, N reduction rates and associated gene abundances. Our findings can improve understanding of the effects of saltwater incursion on the N fate and N balance in estuarine and coastal sediments.
Collapse
Affiliation(s)
- Hao Zheng
- Key Laboratory of Marine Environmental Survey Technology and Application, South China Sea Marine Survey Center, Ministry of Natural Resources, Guangzhou 510300, China
| | - Zhengxin Yin
- Key Laboratory of Marine Environmental Survey Technology and Application, South China Sea Marine Survey Center, Ministry of Natural Resources, Guangzhou 510300, China.
| | - Liang Chen
- Key Laboratory of Marine Environmental Survey Technology and Application, South China Sea Marine Survey Center, Ministry of Natural Resources, Guangzhou 510300, China
| | - Huizhong He
- Key Laboratory of Marine Environmental Survey Technology and Application, South China Sea Marine Survey Center, Ministry of Natural Resources, Guangzhou 510300, China
| | - Zhengyuan Li
- Key Laboratory of Marine Environmental Survey Technology and Application, South China Sea Marine Survey Center, Ministry of Natural Resources, Guangzhou 510300, China
| | - Xiuya Lv
- Key Laboratory of Marine Environmental Survey Technology and Application, South China Sea Marine Survey Center, Ministry of Natural Resources, Guangzhou 510300, China
| | - Jiyu Chen
- Key Laboratory of Marine Environmental Survey Technology and Application, South China Sea Marine Survey Center, Ministry of Natural Resources, Guangzhou 510300, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Xianbiao Lin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Jiang Y, Shao Y, Huang J, Du Y, Wen Y, Tang H, Xu J, Gao D, Lin X, Sun D. Changes in sediment greenhouse gases production dynamics in an estuarine wetland following invasion by Spartina alterniflora. Front Microbiol 2024; 15:1420924. [PMID: 39070262 PMCID: PMC11275515 DOI: 10.3389/fmicb.2024.1420924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
Invasive Spartina alterniflora (S. alterniflora) has significant impacts on sediment biogeochemical cycling in the tidal wetlands of estuaries and coasts. However, the impact of exotic Spartina alterniflora invasion on greenhouse gases (GHGs) production dynamics in sediments remain limited. Here, we investigated the dynamics of sediment physicochemical properties, GHGs production rates, and microbial gene abundances in a native Cyperus malacensis habitat and three invasive S. alterniflora habitats (6-, 10-, and 14-year) in the Minjiang River Estuary, China. The methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) production rates varied both spatially and seasonally, while microbial gene abundances (bacterial and fungal gene abundances) and organic matter (TOC and TN) only varied spatially. GHGs production rates were also characterized by higher values in surface sediment (0-10 cm) compared to subsurface sediment (10-20 cm) and by seasonal variations with higher values in summer than in winter. S. alterniflora invasion can significantly increase CH4 and CO2 production rates, organic matter, and microbial gene abundances (p < 0.05). Temperature, organic matter and microbial gene abundances were the most dominating factor controlling the spatio-temporal variations of CH4 and CO2 production rates. Overall, our findings highlighted the significant role of S. alterniflora invasion in regulating GHGs production rates in coastal wetland sediments and provided fundamental data for estimating GHGs emissions and carbon sequestration in the complex tidal wetlands.
Collapse
Affiliation(s)
- Yongcan Jiang
- Power China Huadong Engineering Corporation Ltd., Hangzhou, Zhejiang Province, China
- College of Environmental and Resource Sciences, Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yinlong Shao
- Power China Huadong Engineering Corporation Ltd., Hangzhou, Zhejiang Province, China
| | - Jiafang Huang
- Institute of Geography, Fujian Normal University, Fuzhou, China
| | - Yunling Du
- Power China Huadong Engineering Corporation Ltd., Hangzhou, Zhejiang Province, China
| | - Yu Wen
- Power China Huadong Engineering Corporation Ltd., Hangzhou, Zhejiang Province, China
| | - Hong Tang
- Power China Huadong Engineering Corporation Ltd., Hangzhou, Zhejiang Province, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dengzhou Gao
- Institute of Geography, Fujian Normal University, Fuzhou, China
| | - Xianbiao Lin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Dongyao Sun
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
3
|
Xing Y, Qiu J, Chen J, Cheng D, Yin Q, Chen X, Xu L, Zheng P. Unveiling hidden interactions: Microorganisms, enzymes, and mangroves at different stages of succession in the Shankou Mangrove Nature Reserve, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171340. [PMID: 38438047 DOI: 10.1016/j.scitotenv.2024.171340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Understanding the interactions between microorganisms, soil extracellular enzymes, and mangroves is crucial for conserving and restoring mangrove ecosystems. However, the unique environments associated with mangroves have resulted in a lack of pertinent data regarding the interactions between these components. Root, stem, leaf, and soil samples were collected at three distinct stages of mangrove succession. Stoichiometry was employed to analyze the carbon, nitrogen, and phosphorus contents of these samples and to quantify extracellular enzyme activities, microbial biomass, and various physicochemical factors in the soil. The results showed that the trends of C, N, and P in the mangrove plants were consistent. Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) were the highest in the Kandelia obovate community. Catalase (CAT) and β-D-G showed the highest content in K. obovate and Bruguiera gymnorrhiza, whereas cellulase showed the opposite trend. Urease was least abundant in the K. obovate community, whereas neutral protease (NPR) and acid phosphatase (ACP) were most abundant. The overall soil environment in mangroves exhibited a state of N limitation, with varying degrees of limitation observed across different succession stages. The demand for P became more intense in the later stages of succession, particularly in the K. obovate and B. gymnorrhiza communities. In conjunction with correlation analysis, it indicated that the input of mangrove plant litter had a significant regulatory influence on the C, N, and P contents in the soil. There was a significant positive correlation between MBC, MBN, and MBP, indicating synergistic effects of C, N, and P on soil microorganisms. Therefore, evaluating the nutrient ratios and sufficiency of mangroves allowed us to comprehensively understand the present environmental conditions. This study aims to develop sustainable management strategies for the conservation and restoration of mangroves.
Collapse
Affiliation(s)
- Yongze Xing
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536015, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Jin Qiu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536015, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingfu Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536015, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai 536000, China.
| | - Dewei Cheng
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536015, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Qunjian Yin
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536015, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Xuyang Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536015, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Li Xu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536015, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| | - Pengfei Zheng
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, MNR, Beihai 536015, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai 536000, China
| |
Collapse
|