1
|
Carpanez TG, Carvalho de Lima E Silva N, Amaral MCS, Moreira VR. Reuse of wastewater and biosolids in soil conditioning: Potentialities, contamination, technologies for wastewater pre-treatment and opportunities for land restoration. CHEMOSPHERE 2025; 373:144185. [PMID: 39908843 DOI: 10.1016/j.chemosphere.2025.144185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
This study reviews the potential use of various wastewaters-vinasse, swine, food industry, paper and pulp, municipal wastewaters, and biosolids-as soil conditioners for restoring degraded areas, focusing on the circular economy concept. Over 90 articles from 2013 to 2024 were analyzed to address current scientific concerns, including these effluents' resistance genes, hormones, and macro/micronutrients. The presence of contaminants was critically examined alongside the necessary treatment methods to prevent soil degradation and ensure soil quality improvement. These included contaminants of emerging concern (CECs), antibiotic resistance genes (AGRs), and pathogens. These contaminants can either be assimilated and degraded by the soil ecosystem or leach into groundwater, translocate to plants, or accumulate in surface soil, necessitating careful monitoring. Furthermore, the study critically evaluates the potential of various physical and biological treatment technologies, such as anaerobic digestion, composting, dewatering, stabilization ponds, biological reactors, membrane processes, rotating disks, and pelletizers, highlighting their effectiveness in mitigating contamination and enhancing soil quality. The long-term effects of wastewater reuse as soil conditioner depend on both wastewater characteristics and soil properties. The benefits of using wastewater as soil conditioners are found to be influenced by characteristics of both the soil and the wastewater, with improvements in soil physical properties (increased porosity and permeability) and chemical properties (increased soil organic carbon and nutrients). Overall, the literature suggests that while wastewaters hold promise as soil conditioners, their successful application depends on effective wastewater management strategies to optimize benefits and mitigate risks.
Collapse
Affiliation(s)
- Thais Girardi Carpanez
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Nayara Carvalho de Lima E Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| |
Collapse
|
2
|
Zhao B, Zhang R, Jin B, Yu Z, Wen W, Zhao T, Quan Y, Zhou J. Sludge water: a potential pathway for the spread of antibiotic resistance and pathogenic bacteria from hospitals to the environment. Front Microbiol 2025; 16:1492128. [PMID: 40012781 PMCID: PMC11863280 DOI: 10.3389/fmicb.2025.1492128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Hospitals play an important role in the spread of antibiotic resistance genes (ARGs) and antimicrobial resistance (AMR). The ARGs present in hospital wastewater tend to accumulate in activated sludge, with different ARGs exhibiting varying migration rates. As a result, sludge water produced during the activated sludge treatment process may be a significant source of ARGs entering the environment. Despite this, research into the behavior of ARGs during sludge concentration and dewatering remains limited. This study hypothesizes that ARGs might exhibit new behaviors in sludge water during sludge concentration. Using metagenomic analysis, we explored the distribution and migration risks of ARGs and human pathogenic bacteria (HPB) in sludge water, comparing them with those in hospital wastewater. The findings reveal a strong correlation between ARGs in sludge water and hospital wastewater, with subtypes such as arlR, efpA, and tetR showing higher abundance in sludge water. Although the horizontal gene transfer potential of ARGs is greater in hospital wastewater than in sludge water, the resistance mechanisms and migration pathways are similar even when their HPB host associations differ. ARGs in both environments are primarily transmitted through coexisting mobile genetic elements (MGEs). This suggests that sludge water serves as a critical route for the release of hospital-derived ARGs into the environment, posing potential threats to public health and ecological safety.
Collapse
Affiliation(s)
- Bingxuan Zhao
- Department of Environmental Science, Yanbian University, Yanji, China
| | - Rui Zhang
- Department of Clinical Medicine, Yanbian University, Yanji, China
| | - Baolin Jin
- Agricultural College, Yanbian University, Yanji, China
| | - Zuozhou Yu
- Department of Environmental Science, Yanbian University, Yanji, China
| | - Weicheng Wen
- Department of Environmental Science, Yanbian University, Yanji, China
| | - Tong Zhao
- Department of Biotechnology, Yanbian University, Yanji, China
| | - Yue Quan
- Department of Environmental Science, Yanbian University, Yanji, China
| | - Jingya Zhou
- Department of Environmental Science, Yanbian University, Yanji, China
| |
Collapse
|
3
|
Xu J, Xiang Y, Yang Z, Peng H, He S, He L, Ye Y, Liu Y, Xie H, Xiong W. Aspartame affects methane yield and enhances transmission of antibiotic resistance genes during anaerobic digestion of sludge. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136715. [PMID: 39616849 DOI: 10.1016/j.jhazmat.2024.136715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/29/2024] [Accepted: 11/28/2024] [Indexed: 01/28/2025]
Abstract
Aspartame (ASP) is a widely used artificial sweetener, yet recent studies have shown that ASP have potential toxic effect. ASP is also detected in sludge, however, the influence of ASP on the performance of sludge anaerobic digestion and the fate of antibiotic resistance genes (ARGs) have not been thoroughly investigated. Under stress of 0, 0.5, 5 and 50 mg/L ASP, cumulative methane production was 181.7, 167.0, 154.0 and 140.8 mlCH4/g VSS, respectively. ASP inhibited the dissolution and conversion of organic matter in sludge. Sequencing data revealed a decline in the abundance of functional microorganisms compared to control, such as hydrolytic-acidifying bacteria and methanogens, potentially attributed to increased intracellular reactive oxygen species and damaged cell membranes caused by ASP addition. Specifically, 50 mg/L ASP reduced the total abundance of methanogens by 59.40 % compared to control. Concurrently, alterations in microbial communities along with an increase in Tn916 and intI1 were observed, increasing the abundance of ARGs. The total abundance of five ARGs peaked at 1.43E+ 12 copies/g at 5 mg/L ASP, representing 139 % of the control. This research contributes valuable insights into the alterations in anaerobic digestion caused by ASP, emphasizing the potential risks in the overall environmental system.
Collapse
Affiliation(s)
- Jialu Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Haihao Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Siying He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lele He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuhang Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yan Liu
- Hunan Modern Environmental Technology Co. Ltd, Changsha 410004, PR China
| | - Huaming Xie
- Hunan Modern Environmental Technology Co. Ltd, Changsha 410004, PR China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
4
|
Li Y, Tao C, Li S, Chen W, Fu D, Jafvert CT, Zhu T. Feasibility study of machine learning to explore relationships between antimicrobial resistance and microbial community structure in global wastewater treatment plant sludges. BIORESOURCE TECHNOLOGY 2025; 417:131878. [PMID: 39603473 DOI: 10.1016/j.biortech.2024.131878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Wastewater sludges (WSs) are major reservoirs and emission sources of antibiotic resistance genes (ARGs) in cities. Identifying antimicrobial resistance (AMR) host bacteria in WSs is crucial for understanding AMR formation and mitigating biological and ecological risks. Here 24 sludge data from wastewater treatment plants in Jiangsu Province, China, and 1559 sludge data from genetic databases were analyzed to explore the relationship between 7 AMRs and bacterial distribution. The results of the Procrustes and Spearman correlation analysis were unsatisfactory, with p-value exceeding the threshold of 0.05 and no strong correlation (r > 0.8). In contrast, explainable machine learning (EML) using SHapley Additive exPlanation (SHAP) revealed Pseudomonadota as a major contributor (39.3 %-74.2 %) to sludge AMR. Overall, the application of ML is promising in analyzing AMR-bacteria relationships. Given the different applicable occasions and advantages of various analysis methods, using ML as one of the correlation analysis tools is strongly recommended.
Collapse
Affiliation(s)
- Yi Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shuyin Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Wenxuan Chen
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Chad T Jafvert
- Lyles School of Civil Engineering, and Environmental & Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
5
|
Ezzariai A, Jimenez J, Barret M, Riboul D, Lacroix MZ, Fels LE, Kouisni L, Bousquet-Melou A, Pinelli E, Hafidi M, Patureau D. Potentialities of semi-continuous anaerobic digestion for mitigating antibiotics in sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66067-66078. [PMID: 39613995 DOI: 10.1007/s11356-024-35664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
The behavior and removal of roxithromycin (ROX), oxytetracycline (OTC), chlortetracycline (CTC), and enrofloxacin (ENR) were investigated during the steady state of sludge anaerobic digestion (AD) in semi-continuous mode (37 °C). Sludge was spiked at realistic concentrations (50 μg/L of each antibiotic) and then used to feed the bioreactor for 80 days. Antibiotics were extracted from the substrate and digested sludge samples by accelerated solvent extraction (ASE). Accurate determination of antibiotics was obtained by the standard addition method (SAM) associated with the liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of antibiotics at a concentration of 2.5 μg/g TS had no inhibitory effects on methane (CH4) production, total and volatile solids (TS and VS) removal as well as chemical oxygen demand (COD) removal. During the steady-state, antibiotics were removed significantly by 50, 100, and 59% respectively for the ROX, OTC, and CTC. Furthermore, ENR removal was not statistically significant and was estimated at 36%. This study highlighted that AD process could partially remove parent compounds, but ROX, CTC, and ENR persisted in the digested sludge. Hence, AD could be considered as a sludge treatment for mitigating, but not suppressing, the release of antibiotics through sludge application.
Collapse
Affiliation(s)
- Amine Ezzariai
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France.
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco.
| | - Julie Jimenez
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | - David Riboul
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | | | - Loubna El Fels
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMagE), Labelled Research Unit CNRST N°4, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | | | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | - Mohamed Hafidi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMagE), Labelled Research Unit CNRST N°4, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Dominique Patureau
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France
| |
Collapse
|
6
|
Ji X, Zhang X, Ju T, Zhou L, Jin D, Wu P. Mechanisms of inhibition and recovery under multi-antibiotic stress in anammox: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122754. [PMID: 39366232 DOI: 10.1016/j.jenvman.2024.122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/15/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
With the escalating global concern for emerging pollutants, particularly antibiotics, microplastics, and nanomaterials, the potential disruption they pose to critical environmental processes like anaerobic ammonia oxidation (anammox) has become a pressing issue. The anammox process, which plays a crucial role in nitrogen removal from wastewater, is particularly sensitive to external pollutants. This paper endeavors to address this knowledge gap by providing a comprehensive overview of the inhibition mechanisms of multi-antibiotic on anaerobic ammonia-oxidizing bacteria, along with insights into their recovery processes. The paper dives deeply into the various ways antibiotics interact with anammox bacteria, focusing specifically on their interference with the bacteria's extracellular polymers (EPS) - crucial components that maintain the structural integrity and functionality of the cells. Additionally, it explores how anammox bacteria utilize quorum sensing (QS) mechanisms to regulate their community structure and respond to antibiotic stress. Moreover, the paper summarizes effective removal methods for these antibiotics from wastewater systems, which is crucial for mitigating their inhibitory effects on anammox bacteria. Finally, the paper offers valuable insights into how anammox communities can recuperate from multi-antibiotic stress. This includes strategies for reintroducing healthy bacteria, optimizing operational conditions, and using bioaugmentation techniques to enhance the resilience of anammox communities. In summary, this paper not only enriches our understanding of the complex interactions between antibiotics and anammox bacteria but also provides theoretical and practical guidance for the treatment of antibiotic pollution in sewage, ensuring the sustainability and effectiveness of wastewater treatment processes.
Collapse
Affiliation(s)
- Xu Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ting Ju
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Li Zhou
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
7
|
Li H, Lian Y, Li S, Yang M, Xie Q, Qiu L, Liu H, Long Y, Hu L, Fang C. The stress response of tetracycline resistance genes and bacterial communities under the existence of microplastics in typical leachate biological treatment system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121865. [PMID: 39018858 DOI: 10.1016/j.jenvman.2024.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Landfill leachate is an important source of microplastics (MPs) and antibiotic-resistance genes (ARGs). Here, in the presence of polystyrene MPs (PS-MPs) and polyethylene MPs (PE-MPs), the nitrogen and phosphorus removal effect and sludge structure performance were affected in an anaerobic-anoxic-aerobic system, a typical biological leachate treatment process. The abundance of tetracycline-resistance genes (tet genes) in biofilms on the two types of MP was significantly higher than that in the leachate and sludge, and the load on PE-MPs was higher than that on PS-MPs because of the porous structure of PE-MPs. Aging of the MPs increased their surface roughness and abundance of oxygen-containing functional groups and shaped the profile of ARGs in the MP biofilms. The biofilm biomass and growth rate on the two types of MP increased with the incubation time in the first 30 days, and was affected by environmental factors. Structural equation models and co-occurrence network analysis demonstrated that the MPs indirectly affected the spectrum of ARGs by affecting biofilm formation, and, to a lesser extent, had a direct impact on the selective enrichment of ARGs. We discuss the mechanisms of the relationships between MPs and ARGs in the leachate treatment system, which will have guiding significance for future research. Our data on the colonization of microorganisms and tet genes in MPs biofilms provide new evidence concerning the accumulation and transmission of these ARGs, and are important for understanding the mechanisms of MPs in spreading pollution.
Collapse
Affiliation(s)
- Hong Li
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Yiting Lian
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Siyi Li
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Mingdi Yang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Qiaona Xie
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Libo Qiu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Hongyuan Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
| |
Collapse
|
8
|
Zhou J, Li M, Han X, Wang B, Zhang C, Cheng Z, Shen Z, Ogugua PC, Zhou C, Pan X, Yang F, Yuan T. Environmental sustainability practice of sewage sludge and low-rank coal co-pyrolysis: A comparative life cycle assessment study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172255. [PMID: 38599412 DOI: 10.1016/j.scitotenv.2024.172255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
This study attempts to bridge the current research gaps related to the environmental burdens of low-rank coal (LRC) and sewage sludge (SS) co-pyrolysis potentially. The life cycle assessment (LCA), energy recovery and sensitivity analysis were investigated for different proportions of LRC and SS (co-)pyrolysis. The results showed that the LRC/SS pyrolysis mitigated the environmental burden with an average improvement of 43 % across 18 impact categories compared with SS pyrolysis. The best net values of energy and carbon credits were identified in SL-4 with -3.36 kWh/kg biochar and -1.10 CO2-eq/kg biochar, respectively. This study firstly proposed an optimal LRC/SS co-feed proportion at 3 to 7, which achieves the acceptable environmental burden and satisfactory energy recovery. Moreover, sensitivity analysis demonstrated this proportion is robust and adaptable. LRC/SS co-pyrolysis is a promising and sustainable alternative for SS disposal, which could meet the imperative of carbon emission mitigation and resource recycling.
Collapse
Affiliation(s)
- Jinyang Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingyue Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xue Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Beili Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chen Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhiwen Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| | - Zhemin Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Paul Chinonso Ogugua
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chao Zhou
- Wuhuan Engineering Co. Ltd., Wuhan 430223, China.
| | - Xiaolei Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fan Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Zhao K, Li C, Li F. Research progress on the origin, fate, impacts and harm of microplastics and antibiotic resistance genes in wastewater treatment plants. Sci Rep 2024; 14:9719. [PMID: 38678134 PMCID: PMC11055955 DOI: 10.1038/s41598-024-60458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
Previous studies reported microplastics (MPs), antibiotics, and antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs). There is still a lack of research progress on the origin, fate, impact and hazards of MPs and ARGs in WWTPs. This paper fills a gap in this regard. In our search, we used "microplastics", "antibiotic resistance genes", and "wastewater treatment plant" as topic terms in Web of Science, checking the returned results for relevance by examining paper titles and abstracts. This study mainly explores the following points: (1) the origins and fate of MPs, antibiotics and ARGs in WWTPs; (2) the mechanisms of action of MPs, antibiotics and ARGs in sludge biochemical pools; (3) the impacts of MPs in WWTPs and the spread of ARGs; (4) and the harm inflicted by MPs and ARGs on the environment and human body. Contaminants in sewage sludge such as MPs, ARGs, and antibiotic-resistant bacteria enter the soil and water. Contaminants can travel through the food chain and thus reach humans, leading to increased illness, hospitalization, and even mortality. This study will enhance our understanding of the mechanisms of action among MPs, antibiotics, ARGs, and the harm they inflict on the human body.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
| | - Chengzhi Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fengxiang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun, 130118, People's Republic of China.
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|