1
|
Shi R, Lian Y, Zeb A, Liu J, Yu M, Wang Q, Wang J, Fu X, Liu W. Foliar exposure to microplastics disrupts lettuce metabolism and negatively interferes with symbiotic microbial communities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109823. [PMID: 40147322 DOI: 10.1016/j.plaphy.2025.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/07/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Plant leaves are considered an important sink for atmospheric microplastics (MPs) because they serve as a vital interface between the atmosphere and terrestrial ecosystems. However, there is still a dearth of information regarding how plant-symbiotic microbe-soil systems are affected by foliar exposure to MPs. In this study, MPs (polystyrene (PS), polyethylene (PE), and polypropylene (PP)) were sprayed over soil-cultivated lettuce (Lactuca sativa L.) four occasions, with final sprays containing 0.4 and 4 μg of MPs per plant. MPs had no discernible impact on lettuce growth as compared to the control group. However, MPs led to reductions in relative chlorophyll content from 16.91 to 30.64 % and net photosynthetic rate from 6.64 to 81.41 %. These results validate the phytotoxicity linked to MP exposure through foliar application. The presence of MPs triggered interspecific competition among phyllosphere microbial species and reduced microbial network complexity by forming ecological niches and regulating carbon- and nitrogen-related metabolic pathways. Furthermore, MPs inhibited the growth of beneficial bacteria in the rhizosphere soil, including a variety of plant growth-promoting bacteria (PGPR) such as Rhizobiales, Pseudomonadales, and Bacillales. This study identifies the ecological health risks associated with atmospheric MPs, which may have a detrimental impact on crop production and further compromise soil ecosystem security.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiuping Fu
- Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China.
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Shekhar S, Sarkar S. Microplastic aging and adsorption in the atmosphere, and their associated impacts on various spheres of the earth: A review. CHEMOSPHERE 2025; 376:144256. [PMID: 40054284 DOI: 10.1016/j.chemosphere.2025.144256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/23/2025]
Abstract
Microplastic (MPs, size <5 mm) is an emerging category of contaminants with detrimental effects on human health, climate, and ecology. The atmospheric pathway is a crucial transport route for the migration of MPs from source to receptor locations. This long-range transport leads to the ubiquitous presence of MPs across all environmental matrices and constrains the source-transport pathway-sink interaction. During atmospheric transport, MPs experience aging and adsorption as a result of interactions with winds, solar radiation, moisture, pH, and atmospheric pollutants, which alters their hydrophilicity, structure, surface area, size, color, and the capacity for adsorption, often resulting in elevated toxicity and associated risks. However, the multifaceted dynamics of atmospheric aging of MPs and consequent impacts are poorly understood. This review presents a critical assessment of three major factors that determine the nature and degree of MP aging and adsorption in the atmosphere, namely: intrinsic MP properties such as the degree of unsaturation, crystallinity, presence of functional groups, charge, specific surface area, and structural defects; environmental factors such as temperature, pH, moisture, and the presence of chemical species; and pollutant characteristics such as charge and hydrophilicity/hydrophobicity that influence adsorption, with an emphasis on potential mechanisms. Additionally, the review presents a comparative assessment of the critical factors and mechanisms responsible for aging and adsorption in atmosphere with those in other environmental media. Further, the potential impacts of atmospherically aged MPs on climate, the biosphere, cryosphere, pedosphere, and hydrosphere are summarized. The review finally identifies key knowledge gaps and outlines perspectives for future research.
Collapse
Affiliation(s)
- Sneha Shekhar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India
| | - Sayantan Sarkar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India.
| |
Collapse
|
3
|
Li Y, Zhang J, Xu L, Li R, Zhang R, Li M, Ran C, Rao Z, Wei X, Chen M, Wang L, Li Z, Xue Y, Peng C, Liu C, Sun H, Xing B, Wang L. Leaf absorption contributes to accumulation of microplastics in plants. Nature 2025; 641:666-673. [PMID: 40205041 DOI: 10.1038/s41586-025-08831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025]
Abstract
Plant absorption is important for the entry of many pollutants into food chains. Although terrestrial microplastics (MPs) can be absorbed by the roots1,2, their upward translocation is slow1. Meanwhile, atmospheric MPs are widely present3,4, but strong evidence on their direct absorption by plants is still lacking. Here, analyses using mass spectrometry detection show the widespread occurrence of polyethylene terephthalate (PET) and polystyrene (PS) polymers and oligomers in plant leaves, and identify that their levels increase with atmospheric concentrations and the leaf growth duration. The concentrations of PET and PS polymers can reach up to 104 ng per g dry weight in leaves at the high-pollution areas studied, such as the Dacron factory and a landfill site, and 102-103 ng per g dry weight of PET and PS can be detected in the open-air-grown leafy vegetables. Nano-sized PET and PS particles in the leaves were visually detected by hyperspectral imaging and atomic force microscopy-infrared spectroscopy. Absorption of the proactively exposed non-labelled, fluorescently labelled or europium-labelled plastic particles by maize (Zea mays L.) leaves through stomatal pathways, as well as their translocation to the vascular tissue through the apoplastic pathway, and accumulation in trichomes was identified using hyperspectral imaging, confocal microscopy and laser-ablation inductively coupled plasma mass spectrometry. Our results demonstrate that the absorption and accumulation of atmospheric MPs by plant leaves occur widely in the environment, and this should not be neglected when assessing the exposure of humans and other organisms to environmental MPs.
Collapse
Affiliation(s)
- Ye Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Junjie Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - Ruoqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Rui Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Mengxi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Chunmei Ran
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Lu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Zhiwanxin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Yining Xue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Chunguang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China.
| |
Collapse
|
4
|
Mustafa AN, Khedre AM, El-Masry SM. Microplastics accumulation in leaf litter: Field evidence for microplastic ingestion and transfer through prey-predatory relationships. CHEMOSPHERE 2025; 376:144295. [PMID: 40081029 DOI: 10.1016/j.chemosphere.2025.144295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Microplastics (MP) contamination of the terrestrial environment is a global concern. The contamination level of MPs in leaf litter and soil fauna that feed on it has not been reported. Moreover, the interspecific relationships among field soil fauna at different trophic levels and their effects on MP loads remain unclear. Thus, we selected a model food chain including a prey-isopod and predatory-spider relationship to evaluate the role of this relationship in the MPs body burden. The results showed that MP concentrations in the fallen leaf litter ranged from 5340 ± 336.15 particles/kg to 10920 ± 432.43 particles/kg dry weight during different seasons of the monitoring year. However, we found MP particles ranged from 1.17 ± 0.25 to 10.11 ± 1.02 particles/ind in isopods and 2.25 ± 0.35 to 4.25 ± 0.35 particles/ind in spiders. All extracted MPs were colored and blue was the most prevalent one. Fiber-shaped polyester (≤500 μm) and (501-1000 μm) were the most common MPs size in tested fauna and leaf litter, respectively. Our findings indicate that MP ingestion by isopods pose a significant risk for higher trophic levels in the terrestrial food chain. Magnification of MPs was observed in the predatory spider with MP concentration increasing from 46.45 ± 16.68 particles/gm wet weight in isopod to 147.51 ± 54.4 particles/gm wet weight in spider, annually. Furthermore, the results indicate that these soil invertebrates may represent a source of MPs to other organisms in the environment.
Collapse
Affiliation(s)
- Asmaa N Mustafa
- Group of Invertebrates Ecology and Pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Sohag, Egypt.
| | - Azza M Khedre
- Group of Invertebrates Ecology and Pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Sohag, Egypt.
| | - Safa M El-Masry
- Group of Invertebrates Ecology and Pollution - Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Sohag, Egypt.
| |
Collapse
|
5
|
Ilyas M, Liu X, Yang J, Xu G. Foliar implications of polystyrene nanoplastics on leafy vegetables and its ecological consequences. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136346. [PMID: 39488113 DOI: 10.1016/j.jhazmat.2024.136346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
The rise of airborne micro-nanoplastics (MNPs) pollution poses a significant threat to agroecological systems. Despite this issue, there is a critical gap in our understanding of their specific effects on various leafy vegetable species. To address this, we conducted a controlled experiment applying Polystyrene Nanoplastics (PS-NPs) on four leafy vegetables: Brassica rapa var. chinensis, B. rapa var. parachinensis, Amaranthus viridis, and Allium tuberosum. Our results showed that PS-NPs tend to accumulate within the epidermal layers and cuticles of these vegetables, particularly around stomatal apertures. More PS-NPs were found on the adaxial and abaxial side of leaves, compared to the cross-section. The abundance of PS-NPs accumulations varied significantly among the studied species due to differences in leaf structure. Notably, leaves with trichomes trapped more PS-NPs particles. These accumulation significantly reduced chlorophyll content and photosynthetic rates, altering the growth and nutritional quality of the vegetables. Our findings reveal the ecological effects of PS-NPs on the nutrient content, phenotype, physiology, growth and biomass metrics of common leafy vegetables. This highlights the potential for PS-NPs accumulation in edible plant tissues, raising concerns about food security and human health.
Collapse
Affiliation(s)
- Muhammad Ilyas
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; National Forest Ecosystem Research Station at Xishuangbanna, Mengla, Yunnan 666300, China.
| | - Guorui Xu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| |
Collapse
|
6
|
Sakali A, Egea-Corbacho A, Coello D, Albendín G, Arellano J, Rodríguez-Barroso R. Analysis of microplastics in the reuse of compost in three agricultural sites (Cádiz, Spain) as a circular economy strategy: detection of micropollutants and incidence of plastic ingestion levels by annelids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51747-51759. [PMID: 39126584 PMCID: PMC11374815 DOI: 10.1007/s11356-024-34615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The system of fertilizing agricultural soils with sludge or compost from wastewater treatment processes, as one of the principles of the circular economy, can lead to microplastic (MP) contamination. The existing technical standards for fertilization are very recent and do not consider this problem, although there is scientific evidence of their existence. Therefore, this study, on the one hand, evaluates the presence of MPs in agricultural soils, previously treated with sludge or compost from wastewater treatment plants for fertilization, and on the second hand, it studies the effect of these MPs on earthworms in three different locations in the south of Spain. For the study, selected composts deriving from the different stages of the composting process and three fertilized soils with increasing MP doses were followed. Samples were taken from different sections in depth (0-5, 5-10, and 10-20 cm) to study the shape, size, type, and abundance of MPs using infrared spectroscopy (FTIR). The results showed that the most abundant shape was fiber, followed by fragment and finally bulk, for both composts and soils. Regarding size distribution, 100 µm was the predominant size in composts (64.3% ± 9.8), while in the case of soils, the predominant range was from 100 to 500 µm. The prevalent polymers in both, composts and soils, were PTFE, TPE, PP, and PET, with four times higher amounts in composts than in soils. Ingestion of common MPs were also verified in two earthworm species, which ingested concentrations higher than 2.1% w/w. PP was the most ingested MP and Eisenia fetida was more voracious compared with Lumbricus terrestris. Therefore, it can be considered a suitable bioindicator for monitoring microplastic contamination in agricultural soil.
Collapse
Affiliation(s)
- Ayda Sakali
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Agata Egea-Corbacho
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Dolores Coello
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| | - Gemma Albendín
- Toxicology Department, International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, 11510, Puerto Real, Spain.
| | - Juana Arellano
- Toxicology Department, International Campus of Excellence of the Sea (CEIMAR), Faculty of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, 11510, Puerto Real, Spain
| | - Rocío Rodríguez-Barroso
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR International Campus of Excellence of the Sea, University of Cadiz, Campus Universitario de Puerto Real, 11510, Cadiz, Spain
| |
Collapse
|
7
|
Teampanpong J, Duengkae P. Using feces to indicate plastic pollution in terrestrial vertebrate species in western Thailand. PeerJ 2024; 12:e17596. [PMID: 38948236 PMCID: PMC11212639 DOI: 10.7717/peerj.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Plastic pollution is a widespread and growing concern due to its transformation into microplastics (MPs), which can harm organisms and ecosystems. This study, aimed to identify plastic pollution in the feces of terrestrial vertebrates using convenience sampling both inside and outside protected areas in Western Thailand. We hypothesized that MPs are likely to be detectable in the feces of all vertebrate species, primarily in the form of small black fragments. We predicted varying quantities of MPs in the feces of the same species across different protected areas. Furthermore, we expected that factors indicating human presence, landscape characteristics, scat weight, and the MP abundance in water, soils, and sediments would influence the presence of plastics in feces. Among 12 terrestrial species studied, potential MPs were found in 41.11% of 90 samples, totaling 83 pieces across eight species including the Asian elephant (Elephas maximus), Eld's deer (Rucervus eldii), Dhole (Cuon alpinus), Gaur (Bos gaurus), Sambar deer (Rusa unicolor), Wild boar (Sus scrofa), Northern red muntjac (Muntiacus vaginalis), and Butterfly lizard (Leiolepis belliana). Specifically, 3.61% of all potential MPs (three pieces) were macroplastics, and the remaining 96.39% were considered potential MPs with the abundance of 0.92 ± 1.89 items.scat-1 or 8.69 ± 32.56 items.100 g-1 dw. There was an association between the numbers of feces with and without potential plastics and species (χ2 = 20.88, p = 0.012). Most potential plastics were fibers (95.18%), predominantly black (56.63%) or blue (26.51%), with 74.70% smaller than two millimeters. Although there were no significant associations between species and plastic morphologies, colors, and sizes, the abundance classified by these characteristics varied significantly. FTIR identified 52.38% as natural fibers, 38.10% as synthetic fibers (rayon, polyurethane (PUR), polyethylene terephthalate (PET), polypropylene (PP), and PUR blended with cotton), and 9.52% as fragments of PET and Polyvinyl Chloride (PVC). Human-related factors were linked to the occurrence of potential plastics found in the feces of land-dwelling wildlife. This study enhances the understanding of plastic pollution in tropical protected areas, revealing the widespread of MPs even in small numbers from the areas distant from human settlements. Monitoring plastics in feces offers a non-invasive method for assessing plastic pollution in threatened species, as it allows for easy collection and taxonomic identification without harming live animals. However, stringent measures to assure the quality are necessitated to prevent exogenous MP contamination. These findings underscore the importance of raising awareness about plastic pollution in terrestrial ecosystems, especially regarding plastic products from clothing and plastic materials used in agriculture and irrigation systems.
Collapse
Affiliation(s)
- Jiraporn Teampanpong
- Department of Conservation, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Prateep Duengkae
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok, Thailand
| |
Collapse
|
8
|
Perera K, Ziajahromi S, Nash SB, Leusch FDL. Evaluating the retention of airborne microplastics on plant leaf: Influence of leaf morphology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123673. [PMID: 38423270 DOI: 10.1016/j.envpol.2024.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Airborne microplastics (AMPs) have been identified in both indoor and outdoor environments and account for a large portion of an individual's daily exposure to microplastics. Thus, it is crucial to find effective methods to capture and control the levels of AMPs and ultimately reduce human exposure. While terrestrial plants have been recognized for their effectiveness in capturing airborne particles, little is known about their ability to capture AMPs. This study investigated the ability of 8 natural plant species and 2 artificial plants to capture AMPs, as well as the influence of leaf morphology on this retention. Plant leaves were exposed to AMPs for two weeks, and deposited AMPs were characterized using a Micro-Fourier Transform Infrared (μ-FTIR)spectroscopy. Selected cleaned leaves were further digested, and the presence of subsurface AMPs was confirmed using μ-Raman spectroscopy. Results revealed that AMPs were retained on the leaves of all selected plant species at concentrations ranging from 0.02 to 0.87 n/cm2. The highest average concentration was observed on an artificial plant with fenestrated leaves, followed by natural plant species with trichomes and leaflets. The lowest concentration was observed on a natural plant with smooth leaves. The majority (90%) of retained AMPs were fibres, and the remaining were fragments. Polyethylene terephthalate (PET) was the prominent polymer type. Additionally, AMP fragments were observed in the leaf subsurface in one selected species, likely retained within the leaf cuticles. The results suggest that plant leaves can indiscriminately retain AMPs on their surfaces and act as temporary sinks for AMPs. Additionally, indoor plants may provide a useful functional role in reducing indoor AMP concentrations, although longer-term studies are needed to ascertain their retention capacity more accurately over time and to evaluate the capability of indoor plants to act as a suitable, cost-effective candidate for reducing AMPs.
Collapse
Affiliation(s)
- Kushani Perera
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld, 4222, Australia.
| | - Shima Ziajahromi
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld, 4222, Australia
| | - Susan Bengtson Nash
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Southport Qld, 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld, 4222, Australia
| |
Collapse
|