1
|
Wei S, Liu X, Tao Y, Wang X, Lin Z, Zhang Y, Hu Q, Wang L, Qu J, Zhang Y. Strategy for enhanced soil lead passivation and mitigating lead toxicity to plants by biochar-based microbial agents. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137512. [PMID: 39986095 DOI: 10.1016/j.jhazmat.2025.137512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
In the study, bone char (BC) backed biochemical composite coupling with phosphate-solubilizing bacteria (CFB1-P) was prepared to explore the passivation performance of lead (Pb) in soil and the mitigation effect on plant growth under Pb stress by measuring change of soil Pb speciation, plant growth parameters and physiological and biochemical indexes. After 30 d of remediation, addition of 1 % CFB1-P could effectively reduce 55.43 % of Pb labile fractions and converted them into Fe-Mn oxide and residual forms. Meanwhile, the bioavailability of Pb was not significantly affected by wetting-drying and freezing-thawing after 20 times cycles (the DTPA-Pb content only increased 6.91-7.35 mg/kg), which proved that the CFB1-P had an excellent prospect of passivating Pb. Moreover, the CFB1-P effectively increased soil fertility and improved soil enzyme activity. The application of CFB1-P could reshape the soil microbial community by recruiting beneficial microorganisms (Bacillus, Sulfurifustis, and Gaiella), which contributed to the improvement of Pb-contaminated soil quality. Furthermore, the fresh weight, photosynthetic pigment concentration, stems and roots length of cucumber seedings were significantly increased. Pb in the cucumber seedings and antioxidant enzyme activities of cucumber seedings were prominently decreased. Therefore, the study can offer a preferable comprehending for the advance of sustainable high-efficiency materials which microbial agent based on functional biochar remediated Pb-polluted soil.
Collapse
Affiliation(s)
- Shuqi Wei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xintong Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zheen Lin
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yupeng Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110006, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Bi M, Liang Y, Chi W, Cui Y, Liu Y, Ren J, Chen Y. Preparation of superhydrophilic functionalized nZVI-MOF-74(Co)-PDA@PVDF composite membranes for enhanced Cr(VI) removal. ENVIRONMENTAL RESEARCH 2025; 282:121997. [PMID: 40449572 DOI: 10.1016/j.envres.2025.121997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/18/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
Nano-zero-valent iron (nZVI) is widely employed in heavy metal wastewater treatment; however, it oxidizes and agglomerates readily, forming dense oxide shells that significantly diminish its effectiveness and reduction efficiency. Furthermore, the complete recovery of nZVI from water remains challenging. To address these issues, we successfully integrated nZVI onto the metal-organic framework Co-MOF-74. The framework, rich in pore channels, facilitates the uniform dispersion of nZVI, while open metal sites provide electrons crucial for the reduction of Cr(VI). Subsequently, we synthesized superhydrophilic nZVI-MOF-74(Co)-PDA@PVDF composite membranes (FMPP membranes) by incorporating nZVI-MOF-74(Co) particles into poly(dopamine) (PDA)-modified poly(vinylidene difluoride) (PVDF) powders. These nZVI-MOF-74(Co)-PDA@PVDF composite membranes feature abundant PDA functional groups, such as -OH, -NH, and -NH2, which enhance membrane hydrophilicity and significantly improve oxidation resistance. The equilibrium adsorption capacity for Cr(VI) was 83.12 mg/g at 25°C. The Cr(VI) removal behavior of the FMPP membrane aligns with the pseudo-second-order kinetic model and the Weber-Morris model. The FMPP membrane offers advantages of high efficiency, stability, and reusability. This study demonstrates that FMPP membranes hold great potential for broad application in heavy metal wastewater treatment.
Collapse
Affiliation(s)
- Mingchun Bi
- Key Laboratory of Oil and Natural Gas Processing, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Yuning Liang
- Key Laboratory of Oil and Natural Gas Processing, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Weimeng Chi
- Key Laboratory of Oil and Natural Gas Processing, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Yuchao Cui
- Daqing Chemical Research Center of Petrochemical Research Institute, PetroChina, Heilongjiang, 163714, China
| | - Yuxuan Liu
- Key Laboratory of Oil and Natural Gas Processing, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Juan Ren
- Key Laboratory of Oil and Natural Gas Processing, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Ying Chen
- Key Laboratory of Oil and Natural Gas Processing, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China.
| |
Collapse
|
3
|
Tan X, Liu Q, Li Y, Lv X, Guo Z, Duan G, Lin A. Reduction-stabilization characteristics, long-term stability and biotoxicity evaluation of Fe(II)/Al layered double hydroxides on Cr(VI) in contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126122. [PMID: 40147311 DOI: 10.1016/j.envpol.2025.126122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Chromium(Cr) poses a significant challenge for soil remediation due to its varying oxidation states, which often result in insufficient long-term effectiveness. In this study, Fe/Al-LDH with an excellent reduction-stabilization effect was synthesized for the remediation of Cr(VI)-contaminated soil, and long-term incubation experiments were conducted over 360 days. The Cr(VI) concentration in both soil types decreased significantly, with stabilization efficiencies reaching 99.82 % and 87.93 %, respectively. Even after multiple freeze-thaw and dry-wet cycles, the leaching concentrations of BS and YS soils remained within the corresponding standard limits after remediation. Moreover, the application of Fe/Al-LDH significantly enhanced plant germination indices, particularly root length. Furthermore, results from in vitro bioaccessibility and soil film diffusion gradient extraction experiments indicated a notable reduction in Cr bioaccessibility within the treatment group. Following remediation, soil enzyme activity, microbial species richness, and diversity increased. The relative abundance of Bacillus, a key Cr(VI)-reducing microorganism, rose from 17.57 % to 19.46 %-30.24 %, further contributing to the synergistic remediation of Cr pollution. Hence, this study provides technical support for the economic, environmentally friendly, and efficient remediation of Cr(VI) pollution control projects.
Collapse
Affiliation(s)
- Xiao Tan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Qi Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - YanQi Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xinyan Lv
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zi Guo
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
Lu F, Wang J, Zhang C, Xin Z, Deng Z, Ren J, Shi J. Sodium citrate-modification enhanced Fe 3S 4 for Cr(Ⅵ) removal from aqueous solution and soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125889. [PMID: 39986560 DOI: 10.1016/j.envpol.2025.125889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Fe3S4 has been widely employed to remove Cr(Ⅵ) from wastewater, however, its practical effectiveness is often limited by agglomeration and passivation. This study introduces sodium citrate (SC) as a ligand to synthesize an Fe3S4-SC magnetic micro-crystal for Cr(Ⅵ) removal from aqueous solutions and contaminated soils. Experimental results show that Fe3S4-SC exhibits superior Cr(Ⅵ) removal efficiency, especially in acidic environments, with a maximum adsorption capacity of 449.12 mg/g. When Fe3S4-SC was used to remediate Cr(Ⅵ)-contaminated soil with a Cr(Ⅵ) content of 664.98 mg/kg and a TCLP-Cr(Ⅵ) concentration of 26.57 mg/L, the removal efficiencies of Cr(Ⅵ) and TCLP-Cr(Ⅵ) were 99.29% and 98.52% after 60 days. Cr speciation shifted from exchangeable fraction and weak acid-soluble fraction to more stable species bound to Fe-Mn oxides and residual fraction. Cr(Ⅵ) removal was primarily facilitated by surface Fe(Ⅱ), dissolved Fe(Ⅱ), and surface S(-Ⅱ). Surface S(-Ⅱ) provided electrons to Fe(Ⅲ), facilitating Fe(Ⅱ) regeneration for the continuous reduction of Cr(Ⅵ). The SC ligand enhanced material dispersion and stability, promoted Fe(Ⅱ) dissolution, reduced passivation layer formation, and improved electron transfer efficiency, thus increasing the efficacy of Fe3S4-SC in Cr(Ⅵ) removal. These findings provide a valuable reference for effectively remediating Cr(Ⅵ) contamination in wastewater and soil.
Collapse
Affiliation(s)
- Feiyu Lu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Xin
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhenkun Deng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Li Y, Xu X, Pan Y, Sun Y, Zou G, Li S, Liao S. Tomato sprayed monocalcium phosphate had production-phytoremediation dual function with high soil Cd extraction and safer fruit production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125382. [PMID: 39615575 DOI: 10.1016/j.envpol.2024.125382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
In order to make use of the large biomass of tomato plant to fulfill the purpose of remediating-while-producing, two commercial tomato varieties, 'Baiguoqiangfeng' (BG) and 'Ouguan' (OG) were grown in Cd contaminated acidic soil to compare their performance on Cd phytoextraction, and monocalcium phosphate (Ca) was foliar applied to reduce their fruit Cd concentration. The results showed that the BG was a more Cd tolerant variety, comparing with OG, it suffered lighter tissue peroxidation and photosynthesis obstacle, owning weaker amino acid metabolism, secondary metabolism and stress signal transduction under Cd stress. The Ca application reduced its ABA level but increased the GSH, IAA, ZR and GA3 level, and enhanced its lysine degradation, tyrosine metabolism, alanine, asparagine and glutamate metabolism, plant hormone signal transduction and phenylpropanoid biosynthesis under Cd stress. With these metabolic regulations, the Ca application promoted its leaf biomass accumulation, guaranteeing the total Cd extraction amount (0.88 mg pot-1 as 0.20 mg kg -1), and reduced the fruit Cd partition, decreasing the fruit Cd concentration by 71.4% with higher yield. Meanwhile, the OG had lower Cd phytoextraction capacity than the BG, and Ca spray enhanced its cell energy generation, flavonoids biosynthesis and photosynthetic carbon fixation, but had no effect on fruit Cd concentration. The two tomato varieties had different responses to Ca application under Cd stress in their hormone signaling, energy metabolism, secondary metabolism and amino acids metabolism, which furtherly differed their Cd phytoextraction capacity and production safety. Therefore, the monocalcium phosphate spray combined 'Baiguoqiangfeng' tomato realized the dual function of production-phytoremediation, and the mechanism of plant Cd sensitivity adjustment through phenylpropanoid biosynthesis and amino acids metabolism deserved further study.
Collapse
Affiliation(s)
- Yanmei Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiangnan Xu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yingjie Pan
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanxin Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shunjiang Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shangqiang Liao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
6
|
Dai X, Luo Y, Deng J, Wen J, He Y, Yuan Y, Wang Y. Ultra-efficient removal of aqueous hexavalent chromium by activated biochar nanoparticles derived from squid ink. ENVIRONMENTAL RESEARCH 2024; 263:120185. [PMID: 39426456 DOI: 10.1016/j.envres.2024.120185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Biochar have been recognized as efficient and renewable carbon sorbents, which attracted much attention on Cr contamination remediation in wastewater. In this study, we propose a cost-effective one-step strategy to synthesize activated biochar nanoparticles derived from squid ink (AS-BC) for aqueous Cr(VI) removal. The results demonstrated that AS-BC achieved a removal rate of 24.29 h-1 at 700 °C (400-times higher than the unmodified one). This was also a state-of-the-art removal performance for aqueous Cr(VI) compared to other reported materials. AS-BC possessed an enormous specific surface (2408 m2/g at 700 °C) with abundant O- and N-containing groups, condensed aromatic structures, and high electron transfer capacity (3.64 and 2.13 mmol e-/g for EAC and EDC at 700 °C), contributing to the ultra-efficient removal of Cr(VI) by synergistic adsorption and reduction. AS-BC absorbed Cr(VI) in the form of HCrO4- by electrostatic attraction with protonated amine-N and hydroxy (-NH3+ and -OH2+) groups and Cr(III) in the form of Cr3+ by complexation with amine-N and hydroxy groups. With a hydroxy-quinone and conjugated π-electron system, AS-BC served as mediator and shuttle to accelerate electron transfer in Cr(VI) reduction with an electron donor. Therefore, our findings highlight the immense potential of AS-BC biochar nanoparticles represent a potential alternative for high-performance Cr(VI) remediation in wastewater.
Collapse
Affiliation(s)
- Xiang Dai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingqi Luo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jinhuan Deng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Junlin Wen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yao He
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yi Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
7
|
Guo Q, Yu D, Yang J, Zhao T, Yu D, Li L, Wang D. A novel sequential extraction method for the measurement of Cr(VI) and Cr(III) species distribution in soil: New insights into the chromium speciation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135864. [PMID: 39298968 DOI: 10.1016/j.jhazmat.2024.135864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
The distribution characteristics of Cr(VI) species in contaminated soil is crucial for soil remediation; however, there is currently a lack of methods for analysing anionic Cr(VI) species in soil. This study has developed a novel sequential extraction method for speciation of Cr(VI) and Cr(III). Besides extraction experiments, simulated chromium species were prepared to verify the presence of proposed chromium species. The results show that Cr(VI) species in soil can be categorized into water-soluble Cr(VI), electrostatically adsorbed Cr(VI), Cr(VI) specifically adsorbed by minerals containing exchangeable Ca2+, Cr(VI) specifically adsorbed by hydrous metal oxides, calcium chromate Cr(VI) and stable complexed adsorption Cr(VI). These Cr(VI) species can be selectively extracted by specific solutions through ion exchange or weak acid dissolution. The most stable Cr(VI) species is Cr(VI) complexed by hydrous iron oxides through bidentate ligand binding; only by dissolution of hydrous iron oxides can this Cr(VI) species be leached. The distribution of Cr(VI) species is closely linked to particular soil compositions including exchangeable Ca2+ and hydrous iron oxides which determinate the Cr(VI) adsorption in soil. Cr(III) species comprise Fe-Cr coprecipitate hydroxides Cr(III), Fe-Mn oxide-bound Cr(III), organic matter-bound Cr(III) and residual Cr(III). Their distribution depends on the types of reductants present in the soil.
Collapse
Affiliation(s)
- Qian Guo
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Dongmei Yu
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jing Yang
- Jiangbei District Ecological Environment Monitoring Station, Chongqing Bureau of Ecology and Environment, Chongqing 400025, PR China
| | - Ting Zhao
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Dan Yu
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Lei Li
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, PR China.
| | - Duanjie Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
8
|
Qu J, Li H, Li Z, Peng W, Wang B, Wang H, Zhang G, Hu Q, Wang L, Zhang Y. Effective removal of Cr(VI) from water by ball milling sulfur-modified micron zero-valent iron:Influencing factors and removal mechanism. ENVIRONMENTAL RESEARCH 2024; 262:119925. [PMID: 39276840 DOI: 10.1016/j.envres.2024.119925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
To address the issues of ZVI's susceptibility to oxidation and aggregation, ball milling and Na2S·9H2O modification were employed on ZVI to enhance its efficiency in removing Cr(VI) from effluent. The characterization results expressed that S-mZVIbm had mesoporous and macroporous structures, enabling successful capture of Cr(VI). Moreover, S-mZVIbm had the highest adsorption capacity for Cr(VI) (350.04 mg/g) at pH = 2.00 and reached kinetic equilibrium within 420 min. Furthermore, the adsorption of Cr(VI) by S-mZVIbm conformed to the Avrami-fractional-order model, demonstrated that the adsorption process indicated a complex multi-adsorption process. Meanwhile, the adsorption also fit to Langmuir and Sips models, suggesting monolayer-level adsorption with heterogeneous sites located on S-mZVIbm. The S-mZVIbm could enhance Cr(VI) adsorption through various synergistic mechanisms, such as electrostatic interaction, chemical precipitation, surface complexation, and reduction. Overall, this research presented an innovative perspective for the modification of ZVI, and S-mZVIbm could be widely applied in the practical remediation of wastewater containing Cr(VI).
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Huiyao Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ziwei Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Peng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Huiru Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
9
|
Chen L, Deng Y, Li P, Yang H, Su H, Wang N, Yang R. Effect of metal-modified sewage sludge biochar tubule on immobilization of chromium in unsaturated soil: Groundwater table fluctuations induced by rainfall. CHEMOSPHERE 2024; 365:143378. [PMID: 39306109 DOI: 10.1016/j.chemosphere.2024.143378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Many studies have studied biochar immobilizing chromium (Cr) in soil. However, few studies were conducted to reduce the environmental risks due to biochar aging in soil. In this study, we adopt FeCl3, MgCl2, and AlCl3 to activate sewage sludge to form modified biochar and produce biochar tubules. Then, the column experiments were carried out to study the effect of fluctuating groundwater table on Cr leaching behavior, total Cr, and fractions distribution with the insertion of biochar tubule. Results showed that the Cr immobilization performance was improved by metal-modification biochar, the biochar tubules can significantly decrease the Cr leaching amounts, retard the Cr downward migration in the soil, and there was a better effect with slightly Cr-contaminated soil. In addition, the immobilization effect is also impacted by the biochar's application mode and the hydrodynamic conditions. Detailedly, the Cr leaching amounts maximally decreased by 33.39%, the residual amounts maximally increased by 10.05% in the soil column, and the exchangeable (EX) and carbonates-bound (CB) fractions were maximally increased by 85.18%, 151.78% at the equal depth of soil column, respectively. BET, SEM-EDS, XRD, and FTIR analyses revealed that biochars' immobilization mechanisms on Cr involved reduction(predominately), physisorption, precipitation, and complexation. Risk assessment demonstrated that the sewage sludge biochar has very low environmental risk. This study indicates that the biochar tubule applied to immobilize Cr in soil has potential and provides new insights into reducing environmental risks due to biochar aging.
Collapse
Affiliation(s)
- Lin Chen
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), Chengdu, 610059, China; College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yinger Deng
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Pengjie Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Hongkun Yang
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Hu Su
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Ning Wang
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Rui Yang
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
10
|
Yang H, Zhang P, Zheng Q, Nie G, Hayat A, Bajaber MA, Raza S, Li D, Sui Y. Synergistically active Fe 3O 4 magnetic and EDTA modified cellulose cotton fabric using chemical method and their effective pollutants removal ability from wastewater. Int J Biol Macromol 2024; 274:132996. [PMID: 38906343 DOI: 10.1016/j.ijbiomac.2024.132996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024]
Abstract
A unique combination of cotton fabric (CF) with a mixture of EDTA and APTES Fe3O4 magnetic particles was developed and utilized for the first time as an adsorbent for removing pollutants from wastewater. Initially, Fe3O4 was synthesized using the co-precipitation method. Further, the surface of Fe3O4 was modified by introducing amino functional groups through a reaction with APTES, resulting in Fe3O4-NH2. Following this, the surface of carbon fiber (CF) was altered using ethylenediaminetetraacetic acid (EDTA) to create CF@EDTA. Through the use of EDC-HCl and NHS, Fe3O4-NH2 was attached to the surface of CF@EDTA, resulting in the final product CF@EDTA/Fe3O4. Subsequently, the prepared CF@EDTA/Fe3O4 was utilized to adsorb metal pollutants from wastewater, with a thorough analysis conducted using various characterization techniques including FTIR, SEM, EDX, XRD, VSM, and XPS to study the materials. The study specifically aimed to assess the adsorption performance of our cotton-based material towards As(III) and Cr3+ metal ions. The pH study was also performed. Results indicated that the material exhibited an adsorption capacity of approximately 714 mg/g for As(III) ions and 708 mg/g for Cr3+ ions. The Langmuir and Freundlich models, as well as pseudo-first and second-order models were also analyzed. The Langmuir and pseudo-second-order models were found to best fit the data. In terms of regeneration and reusability, the materials showed straightforward regeneration and recyclability for up to 15 cycles. The remarkable adsorption capacity, combined with the unique blend of cotton and Fe3O4 magnet, along with its recyclability, positions our material CF@EDTA/Fe3O4 as a promising contender for wastewater treatment and other significant areas in water research.
Collapse
Affiliation(s)
- Huanggen Yang
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, PR China
| | - Pei Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, PR China.
| | - Qi Zheng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, PR China.
| | - Guochao Nie
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, PR China
| | - Asif Hayat
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Saleem Raza
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China.
| | - Duofu Li
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, PR China
| | - Yan Sui
- Key Laboratory of Jiangxi Province for Special Optoelectronic Artificial Crystal Materials, College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, PR China
| |
Collapse
|
11
|
Xu Y, Liu H, Wen S, Guo J, Shi X, He Q, Lin W, Gao Y, Wang R, Xue W. High performance self-assembled sulfidized nanoscale zero-valent iron for the immobilization of cadmium in contaminated sediments: Optimization, microbial response, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134022. [PMID: 38484662 DOI: 10.1016/j.jhazmat.2024.134022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Sulfidized nanoscale zero-valent iron (S-nZVI) showed excellent removal capacity for cadmium (Cd) in aqueous phase. However, the remediation effects of S-nZVI on Cd-contaminated sediment and its interactions with microorganisms in relation to Cd fate remain unclear. The complexity of the external environment posed a challenge for Cd remediation. This study synthesized S-nZVI with different S and Fe precursors to investigate the effect of precursors and applied the optimal material to immobilize Cd in sediments. Characterization analysis revealed that the precursor affected the morphology, Fe0 crystallinity, and the degree of oxidation of the material. Incubation experiments demonstrated that the immobilization efficiency of Cd using S-nZVIFe3++S2- (S/Fe = 0.14) reached the peak value of 99.54%. 1% and 5% dosages of S-nZVI significantly reduced Cd concentration in the overlying water, DTPA-extractable Cd content, and exchangeable (EX) Cd speciation (P < 0.05). Cd leaching in sediment and total iron in the overlying water remained at low levels during 90 d of incubation. Notably, each treatment maintained a high Cd immobilization efficiency under different pH, water/sediment ratio, organic acid, and coexisting ion conditions. Sediment physicochemical properties, functional bacteria, and a range of adsorption, complexation and precipitation of CdS effects dominated Cd immobilization.
Collapse
Affiliation(s)
- Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Qi He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Weilong Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
12
|
Yang Y, Han T, Wang J. Ultrafast and highly efficient Cd(II) and Pb(II) removal by magnetic adsorbents derived from gypsum and corncob: Performances and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116265. [PMID: 38547730 DOI: 10.1016/j.ecoenv.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
The utilization of gypsum and biomass in environmental remediation has become a novel approach to promote waste recycling. Generally, raw waste materials exhibit limited adsorption capacity for heavy metal ions (HMIs) and often result in poor solid-liquid separation. In this study, through co-pyrolysis with corncob waste, titanium gypsum (TiG) was transformed into magnetic adsorbents (GCx, where x denotes the proportion of corncob in the gypsum-corncob mixture) for the removal of Cd(II) and Pb(II). GC10, the optimal adsorbent, which was composed primarily of anhydrite, calcium sulfide, and magnetic Fe3O4, exhibited significantly faster adsorption kinetics (rate constant k1 was 218 times and 9 times of raw TiG for Cd(II) and Pb(II)) and higher adsorption capacity (Qe exceeded 200 mg/g for Cd(II) and 400 mg/g for Pb(II)) than raw TiG and previous adsorbents. Cd(II) removal was more profoundly inhibited in a Cd(II) + Pb(II) binary system, suggesting that GC10 showed better selectivity for Pb(II). Moreover, GC10 could be easily separated from purified water for further recovery, due to its high saturation magnetization value (6.3 emu/g). The superior removal capabilities of GC10 were due to adsorption and surface precipitation of metal sulfides and metal sulfates on the adsorbent surface. Overall, these waste-derived magnetic adsorbents provide a novel and sustainable approach to waste recycling and the deep purification of multiple HMIs.
Collapse
Affiliation(s)
- Yuhong Yang
- School of Water Conservancy, Henan Key Laboratory of Water Environment Simulation and Treatment, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, PR China
| | - Tongtong Han
- School of Water Conservancy, Henan Key Laboratory of Water Environment Simulation and Treatment, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, PR China
| | - Jing Wang
- International Joint Laboratory of Henan Province for Environmental Functional Materials, Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan 450002, PR China.
| |
Collapse
|
13
|
Li R, Zhang C, Hui J, Shen T, Zhang Y. The application of P-modified biochar in wastewater remediation: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170198. [PMID: 38278277 DOI: 10.1016/j.scitotenv.2024.170198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Phosphorus modified biochar (P-BC) is an effective adsorbent for wastewater remediation, which has attracted widespread attention due to its low cost, vast source, unique surface structure, and abundant functional groups. However, there is currently no comprehensive analysis and review of P-BC in wastewater remediation. In this study, a detailed introduction is given to the synthesis method of P-BC, as well as the effects of pyrolysis temperature and residence time on physical and chemical properties and adsorption performance of the material. Meanwhile, a comprehensive investigation and evaluation were conducted on the different biomass types and phosphorus sources used to synthesize P-BC. This article also systematically compared the adsorption efficiency differences between P-BC and raw biochar, and summarized the adsorption mechanism of P-BC in removing pollutants from wastewater. In addition, the effects of P-BC composite with other materials (element co-doping, polysaccharide stabilizers, microbial loading, etc.) on physical and chemical properties and pollutant adsorption capacity of the materials were investigated. Some emerging applications of P-BC were also introduced, including supercapacitors, CO2 adsorbents, carbon sequestration, soil heavy metal remediation, and soil fertility improvement. Finally, some valuable suggestions and prospects were proposed for the future research direction of P-BC to achieve the goal of multiple utilization.
Collapse
Affiliation(s)
- Ruizhen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jing Hui
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tieheng Shen
- Heilongjiang Agricultural Technology Promotion Station, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Zeng G, Si M, Dong C, Liao Q, He F, Johnson VE, Arinzechi C, Yang W, Yang Z. Adsorption behavior of lead, cadmium, and arsenic on manganese-modified biochar: competition and promotion. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:86. [PMID: 38367055 DOI: 10.1007/s10653-024-01865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Biochar adsorption of heavy metals has been a research hotspot, yet there has been limited reports on the effect of heavy metal interactions on adsorption efficiency in complex systems. In this study, the adsorbent was prepared by pyrolysis of rice straw loaded with manganese (BC-Mn). The interactions of Pb, Cd and As adsorption on BC-Mn were systematically studied. The results of the adsorption isotherms for the binary metal system revealed a competitive adsorption between Pb and Cd, resulting in decreased Pb (from 214.38 mg/g to 148.20 mg/g) and Cd (from 165.73 mg/g to 92.11 mg/g). A notable promotion occurred between As and Cd, showing an increase from 234.93 mg/g to 305.00 mg/g for As and 165.73 mg/g to 313.94 mg/g for Cd. In the ternary metal system, Pb inhibition did not counteract the promotion of Cd and As. Furthermore, the Langmuir isotherm effectively described BC-Mn's adsorption process in monometallic, binary, and ternary metal systems (R2 > 0.9294). Zeta and FTIR analyses revealed simultaneous competition between Pb and Cd for adsorption on BC-Mn's -OH sites. XPS analysis revealed that As adsorption by BC-Mn facilitated the conversion of MnO2 and MnO to MnOOH, resulting in increased hydroxyl radical production on BC-Mn's surface. Simultaneously, Cd combined with the adsorbed As to form ternary Cd-As-Mn complexes, which expedited the removal of Cd. These results help to provide theoretical support as well as technical support for the treatment of Pb-Cd-As contaminated wastewater.
Collapse
Affiliation(s)
- Gai Zeng
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Mengying Si
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, People's Republic of China
| | - Chunhua Dong
- Soil and Fertilizer Institute of Hunan Province, Changsha, 410083, People's Republic of China
| | - Qi Liao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, People's Republic of China
| | - Fangshu He
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Varney Edwin Johnson
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Chukwuma Arinzechi
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Weichun Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, People's Republic of China
| | - Zhihui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, People's Republic of China.
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha, 410083, People's Republic of China.
| |
Collapse
|
15
|
Feng M, Li M, Guo C, Yuan M, Zhang L, Qiu S, Fu W, Zhang K, Guo H, Wang F. Green synthesis of Ca xLa 1-xMnO 3 with modulation of mesoporous and vacancies for efficient low concentration phosphate adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119837. [PMID: 38154225 DOI: 10.1016/j.jenvman.2023.119837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 12/30/2023]
Abstract
Phosphate concentrations in eutrophic surface waters are usually low, and efficient removal of low concentration phosphate remains a challenge. In this study, Ca-doped LaMnO3 synthesized at doping ratios, designated as CaxLa1-xMnO3 (x = 0, 0.2, 0.4, 0.7), were compared. It was found that, the adsorption capacity of Ca0.4La0.6MnO3 material reached 63.01 mg/g at pH = 5, increased by 63.6% over the undoped LaMnO3 perovskite. For long-term adsorption, Ca0.4La0.6MnO3 could constantly adsorb phosphate to avoid phosphate accumulation (<0.05 mg/L). This proves that Ca0.4La0.6MnO3 has the ability to control dynamic water eutrophication. Characterization and density functional theory results confirmed that CaxLa1-xMnO3 can increase the content of mesopores and oxygen vacancies, providing additional active sites. This reduces the adsorption energy of the La site, promotes electron transfer, and increases its affinity. It provides a new method for removing low-concentration phosphates.
Collapse
Affiliation(s)
- Menghan Feng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China
| | - Mengmeng Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China; Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changbin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China; College of Grass Industry and Environmental Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Mingyao Yuan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China; College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Lisheng Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Shangkai Qiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China; College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Weilin Fu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Dali Comprehensive Experimental Station of Environmental Protection Research and Monitoring Institute, Ministry of Agriculture and Rural Affairs (Dali Original Seed Farm), Dali, 671004, China.
| |
Collapse
|
16
|
Qu J, Shi S, Li Y, Liu R, Hu Q, Zhang Y, Wang Y, Ma Y, Hao X, Zhang Y. Fe/N co-doped magnetic porous hydrochar for chromium(VI) removal in water: Adsorption performance and mechanism investigation. BIORESOURCE TECHNOLOGY 2024; 394:130273. [PMID: 38160851 DOI: 10.1016/j.biortech.2023.130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Four kinds of Fe/N co-doped porous hydrochar were prepared by one/two-step N-doping schemes using microwave/traditional pyrolysis methods for removing Cr(VI) from aqueous phase. Heterocyclic-N was introduced through CO(NH2)2-based hydrothermal carbonization process, which could adjust the electronic structure of the hydrochar framework. Furthermore, Fe0 and Fe3O4 were embedded into hydrochar via carbothermal reduction reaction using FeCl3 as the precursor, which improved the reducibility and magnetism of the material. The modified hydrochar exhibited pH-dependency and rapid kinetic equilibrium, and the maximal adsorption amount of magnetic porous hydrochar obtained by microwave-assisted one-step N-doping (MP1HCMW) reached 274.34 mg/g. Meanwhile, the modified hydrochar had a high tolerance to multiple co-existing ions and the removal efficiency maintained above 73.91 % during five regeneration cycles. Additionally, MP1HCMW efficiently removed Cr(VI) via pore filling, electrostatic attraction, ion exchange, reduction, complexation, and precipitation. Summarily, Fe/N co-doped porous hydrochar was a feasible adsorbent with outstanding remediation potential for Cr(VI)-contaminated water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuhui Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruixin Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yupeng Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, No. 63 Agricultural Road, Zhengzhou 450002, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yunqiao Ma
- Heilongjiang Agricultural Environment and Cultivated Land Protection Station, Harbin 150036, China
| | - Xiaoyu Hao
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Rizwan M, Murtaza G, Zulfiqar F, Moosa A, Iqbal R, Ahmed Z, Khan I, Siddique KHM, Leng L, Li H. Tuning active sites on biochars for remediation of mercury-contaminated soil: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115916. [PMID: 38171108 DOI: 10.1016/j.ecoenv.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Mercury (Hg) contamination is acknowledged as a global issue and has generated concerns globally due to its toxicity and persistence. Tunable surface-active sites (SASs) are one of the key features of efficient BCs for Hg remediation, and detailed documentation of their interactions with metal ions in soil medium is essential to support the applications of functionalized BC for Hg remediation. Although a specific active site exhibits identical behavior during the adsorption process, a systematic documentation of their syntheses and interactions with various metal ions in soil medium is crucial to promote the applications of functionalized biochars in Hg remediation. Hence, we summarized the BC's impact on Hg mobility in soils and discussed the potential mechanisms and role of various SASs of BC for Hg remediation, including oxygen-, nitrogen-, sulfur-, and X (chlorine, bromine, iodine)- functional groups (FGs), surface area, pores and pH. The review also categorized synthesis routes to introduce oxygen, nitrogen, and sulfur to BC surfaces to enhance their Hg adsorptive properties. Last but not the least, the direct mechanisms (e.g., Hg- BC binding) and indirect mechanisms (i.e., BC has a significant impact on the cycling of sulfur and thus the Hg-soil binding) that can be used to explain the adverse effects of BC on plants and microorganisms, as well as other related consequences and risk reduction strategies were highlighted. The future perspective will focus on functional BC for multiple heavy metal remediation and other potential applications; hence, future work should focus on designing intelligent/artificial BC for multiple purposes.
Collapse
Affiliation(s)
- Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Urumqi 848300, China
| | - Imran Khan
- School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth WA 6001, Australia.
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China; Xiangjiang Laboratory, Changsha 410205, China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|