1
|
Dauchy X. The quest for the perfect "total PFAS" method: how can the total oxidisable precursor (TOP) assay be made reliable? Anal Bioanal Chem 2025:10.1007/s00216-025-05902-3. [PMID: 40353877 DOI: 10.1007/s00216-025-05902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/03/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) make up a large and complex class of manmade chemicals. They have been widely used in numerous industrial branches and are incorporated into many consumer products. Today, there is a consensus on the fact that PFAS are present in all environmental compartments and that populations all over the world are subjected to them via internal exposure. It has been estimated that thousands of individual PFAS have been manufactured and marketed since the 1950s, to which impurities present in commercial products and intermediate environmental transformation products should be added. Since it is unrealistic to be able to individually identify, detect and quantify all the PFAS present in a sample, several analytical approaches have been developed to assess the presence of "hidden/unseen" PFAS. One of these, known as the total oxidisable precursor (TOP) assay, was first described in 2012. Basically, it converts some PFAS, hereafter referred to as precursors, into stable terminal products readily measurable by routine target methods. This review is based on more than 100 studies in which the original TOP assay was simply applied or optimised. The review found that the TOP assay was selective, sensitive, applicable to many matrices, useful within a forensic context, inexpensive, and easy to implement and has been assessed in the literature on a wide range of precursors. However, this method comprises many subtleties and has some flaws that operators should be made aware of so that they may be addressed as far as possible. Finally, this review tries to lay the foundations for better practices and quality assurance/quality control measures, in order to improve accuracy and reliability of TOP assay results.
Collapse
Affiliation(s)
- Xavier Dauchy
- Nancy Laboratory for Hydrology, Water Chemistry Department, ANSES, 40 Rue Lionnois, Nancy, 54000, France.
| |
Collapse
|
2
|
Bonnet B, Sharpe MK, Seisenbaeva G, Yeung LWY, Ross I, Ahrens L. Decontamination and Surface Analysis of PFAS-Contaminated Fire Suppression System Pipes: Effects of Cleaning Agents and Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2222-2232. [PMID: 39846395 PMCID: PMC11800388 DOI: 10.1021/acs.est.4c09474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS)-containing firefighting foam have been used in stationary fire suppression systems for several decades. However, there is a lack of research on how to decontaminate PFAS-contaminated infrastructure and evaluate treatment efficiency. This study assessed the removal of PFAS from stainless steel pipe surfaces using different cleaning agents (tap water, methanol, and aqueous solutions containing 10 and 20 wt % of butyl carbitol (BC)) at different temperatures (20 °C, 40 °C, and 70 °C). The content of the remaining fluorine (F)-containing compounds on the pipe surfaces was evaluated for the first time using time-of-flight elastic recoil detection (ToF-ERD). The results showed that a 20% BC aqueous solution heated to 70 °C removed up to 40 μg/cm2 ∑PFAS from surfaces via soaking (targeted analysis). Treatment with 20% BC was 2- to 8-fold more effective than tap water at 70 °C and 10- to 20-fold more effective than tap water at 20 °C. Total fluorine analysis determined by combustion ion chromatography showed a 2- to 8-fold higher F-equivalent compared to targeted analysis in the cleaning solution after treatment, indicating the presence of a significant amount of polyfluoroalkyl PFAS. Surface analysis with ToF-ERD confirmed partial F removal from pipe surfaces throughout consecutive soaking intervals, with residual F remaining on pipe surfaces after treatment, leaving the risk of PFAS rebound into F-free firefighting foams. Furthermore, supramolecular assemblies of PFAS with at least 70 PFOS molecules/nm2 were identified by ToF-ERD on pipe interior surfaces.
Collapse
Affiliation(s)
- Björn Bonnet
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala 75651, Sweden
| | - Matthew K. Sharpe
- Surrey
Ion Beam Centre, University of Surrey, Guildford, Surrey GU2
7XH, U.K.
| | - Gulaim Seisenbaeva
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, Uppsala 75651, Sweden
| | - Leo W. Y. Yeung
- SMTM
Research Centre, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ian Ross
- CDM
Smith, 220 Montgomery
Street. Suite 1418, San Francisco, California 94104 USA, United States
| | - Lutz Ahrens
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala 75651, Sweden
| |
Collapse
|
3
|
Sabba F, Kassar C, Zeng T, Mallick SP, Downing L, McNamara P. PFAS in landfill leachate: Practical considerations for treatment and characterization. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136685. [PMID: 39674787 DOI: 10.1016/j.jhazmat.2024.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in consumer products and are particularly high in landfill leachate. The practice of sending leachate to wastewater treatment plants (WWTPs) is an issue for utilities that have biosolids land application limits based on PFAS concentrations. Moreover, landfills may face their own effluent limit guidelines for PFAS. The purpose of this review is to understand the most appropriate treatment technology combinations for mitigating PFAS in landfill leachate. The first objective is to understand the unique chemical characteristics of landfill leachate. The second objective is to establish the role and importance of known and emerging analytical techniques for PFAS characterization in leachate, including quantification of precursor compounds. Next, an overview of technologies that concentrate PFAS and technologies that destroy PFAS is provided, including fundamental background content and key operating parameters. Finally, practical considerations for PFAS treatment technologies are reviewed, and recommendations for PFAS treatment trains are described. Both pros and cons of treatment trains are noted. In summary, the complex matrix of leachate requires a separation treatment step first, such as foam fractionation, for example, to concentrate the PFAS into a lower-volume stream. Then, a degradation treatment step can be applied to the concentrated PFAS stream.
Collapse
Affiliation(s)
- Fabrizio Sabba
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States.
| | - Christian Kassar
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States
| | - Synthia P Mallick
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Leon Downing
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Patrick McNamara
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States; Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| |
Collapse
|
4
|
Zweigle J, Schmidt A, Bugsel B, Vogel C, Simon F, Zwiener C. Perfluoroalkyl acid precursor or weakly fluorinated organic compound? A proof of concept for oxidative fractionation of PFAS and organofluorines. Anal Bioanal Chem 2024; 416:6799-6808. [PMID: 39394364 PMCID: PMC11579176 DOI: 10.1007/s00216-024-05590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Organofluorine mass balance approaches are increasingly applied to investigate the occurrence of per- and polyfluoroalkyl substances (PFAS) and other organofluorines in environmental samples more comprehensively. Usually, complex samples prevent the identification and quantification of every fluorine-containing molecule. Consequently, large unidentified fractions between fluorine sum parameters such as extractable organic fluorine (EOF) and the sum of quantified analytes are frequently reported. We propose using oxidative conversion to separate (unidentified) weakly fluorinated compounds (e.g., pesticides, pharmaceuticals) from PFAA-precursors (perfluoroalkyl chain lengths ≥ C6). We show with three organofluorine model substances (flufenamic acid, diflufenican, pantoprazole) that CF3-groups or aromatic fluorine can be quantitatively converted to inorganic fluoride and trifluoroacetic acid (TFA) by applying PhotoTOP oxidation (UV/TiO2). The principle of fluorine separation in mixtures is demonstrated by the oxidation of the three weakly fluorinated compounds together with the PFAA-precursor 6:2/6:2 fluorotelomer mercaptoalkyl phosphate diester (FTMAP). After oxidation, the products F- and TFA were separated from PFCAs (> C4) by SPE, and the fractions were analyzed individually. Closed mass balances both with and without the addition of organic matrix were achieved. Eventually, the fluorine balance was verified by total fluorine measurements with combustion ion chromatography (CIC). The proposed methods should be considered a proof of concept to potentially explain unidentified fractions of the EOF, especially if compounds with low fluorine content such as pesticides, pharmaceuticals, and their transformation products contribute largely to the EOF. Future studies are needed to show the applicability to the complexity of environmental samples.
Collapse
Affiliation(s)
- Jonathan Zweigle
- Department of Geosciences, Environmental Analytical Chemistry, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany.
| | - Apollonia Schmidt
- Department of Geosciences, Environmental Analytical Chemistry, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| | - Boris Bugsel
- Department of Geosciences, Environmental Analytical Chemistry, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| | - Christian Vogel
- Division 4.3 - Contaminant Transfer and Environmental Technologies, Federal Institute for Materials Research and Testing, Unter Den Eichen 87, 12205, Berlin, Germany
| | - Fabian Simon
- Division 1.1 - Inorganic Trace Analysis, Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489, Berlin, Germany
| | - Christian Zwiener
- Department of Geosciences, Environmental Analytical Chemistry, University of Tübingen, Schnarrenbergstraße 94-96, 72076, Tübingen, Germany
| |
Collapse
|
5
|
Patch D, O'Connor N, Ahmed E, Houtz E, Bentel M, Ross I, Scott J, Koch I, Weber K. Advancing PFAS characterization: Development and optimization of a UV-H 2O 2-TOP assay for improved PFCA chain length preservation and organic matter tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174079. [PMID: 38908604 DOI: 10.1016/j.scitotenv.2024.174079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
As per- and polyfluoroalkyl substances (PFAS) infiltrate the environment via industrial, commercial, and domestic sources, the demand for robust, cost-effective, and straightforward analytical assays intensifies to enhance PFAS characterization and quantification. To address this demand, this study introduces a novel UV-H2O2-TOP assay, identifying optimal parameters such as pH (5-9), oxidant concentration (500 mM H2O2), activation rate (63 mM H2O2 h-1), and an acceptable total organic carbon (TOC) limit (~1000 mg/L TOC) to achieve maximum PFAA precursor conversion. Additional work was performed further optimizing the UV-TOP assay, by confirming its superiority to heat activation, identifying the effectiveness of different persulfate salts, and investigating different concentrations of sodium persulfate and sodium hydroxide at a 1:2.5 ratio on PFCA yield. Our investigation concluded by applying the UV-H2O2-TOP assay, using sodium persulfate as the TOP assay oxidant, to 6:2 FTS and five different AFFF samples. High-resolution mass spectrometry and an expanded analytical suite support sample analysis, facilitating direct quantification of ultra-short chain perfluoroalkyl carboxylates (PFCAs) and common fluorotelomer compounds including 5:3/5:1:2 fluorotelomer betaine and 6:2 fluorotelomer sulfonamido betaine. Results highlight several advantages of this tandem UV-activated method, including enhanced preservation of perfluoroalkyl chains (post-oxidation of 6:2 fluorotelomer sulfonate resulted in 28 % PFHpA, 47 % PFHxA, 25 % C3-C5 PFCA), capacity to handle high TOC limits (1000 mg/L TOC), and ability to incorporate higher persulfate concentrations in a single oxidation cycle.
Collapse
Affiliation(s)
- David Patch
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Natalia O'Connor
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Ellie Ahmed
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Erika Houtz
- ECT2, 125 Industrial Way, Portland, ME 04103, United States of America
| | - Michael Bentel
- Department of Chemical and Environmental Engineering, University of Cincinnati, United States of America
| | - Ian Ross
- CDM Smith, 75 State St #701, Boston, MA 02109, United States of America
| | - Jennifer Scott
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Iris Koch
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada
| | - Kela Weber
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
| |
Collapse
|
6
|
Battye N, Patch D, Koch I, Monteith R, Roberts D, O'Connor N, Kueper B, Hulley M, Weber K. Mechanochemical degradation of per- and polyfluoroalkyl substances in soil using an industrial-scale horizontal ball mill with comparisons of key operational metrics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172274. [PMID: 38604365 DOI: 10.1016/j.scitotenv.2024.172274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Horizontal ball mills (HBMs) have been proven capable of remediating per- and polyfluoroalkyl substances (PFAS) in soil. Industrial-sized HBMs, which could easily be transported to impacted locations for on-site, ex-situ remediation, are readily available. This study examined PFAS degradation using an industrial-scale, 267 L cylinder HBM. This is the typical scale used in the industry before field application. Near-complete destruction of 6:2 fluorotelomer sulfonate (6:2 FTS), as well as the non-target PFAS in a modern fluorotelomer-based aqueous film forming foam (AFFF), was achieved when spiked onto nepheline syenite sand (NSS) and using potassium hydroxide (KOH) as a co-milling reagent. Perfluorooctanesulfonate (PFOS) showed much better and more consistent results with scale-up regardless of KOH. Perfluorooctanoate (PFOA) was examined for the first time using a HBM and behaved similarly to PFOS. Highly challenging field soils from a former firefighting training area (FFTA) were purposefully used to test the limits of the HBM. To quantify the effectiveness, free fluoride analysis was used; changes between unmilled and milled soil were measured up to 7.8 mg/kg, which is the equivalent of 12 mg/kg PFOS. Notably, this does not factor in insoluble fluoride complexes that may form in milled soils, so the actual amount of PFAS destroyed may be higher. Soil health, evaluated through the assessment of key microbial and associated plant health parameters, was not significantly affected as a result of milling, although it was characterized as poor to begin with. Leachability reached 100 % in milled soil with KOH, but already ranged from 81 to 96 % in unmilled soil. A limited assessment of the hazards associated with the inhalation of PFAS-impacted dust from ball-milling, as well as the cross-contamination potential to the environment, showed that the risk was low in both cases; however, precautions should always be taken.
Collapse
Affiliation(s)
- Nicholas Battye
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - David Patch
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Iris Koch
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | | | - Dylan Roberts
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Natalia O'Connor
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Bernard Kueper
- Department of Civil Engineering, Queen's University, Kingston, ON, Canada
| | - Michael Hulley
- Environmental Sciences Group, Department of Civil Engineering, Royal Military College of Canada, Kingston, ON, Canada
| | - Kela Weber
- Environmental Sciences Group, Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada.
| |
Collapse
|
7
|
Glover CM, Pazoki F, Munoz G, Sauvé S, Liu J. Applying the modified UV-activated TOP assay to complex matrices impacted by aqueous film-forming foams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171292. [PMID: 38432371 DOI: 10.1016/j.scitotenv.2024.171292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large chemical family, and numerous chemical species can co-exist in environmental samples, especially those impacted by aqueous film-forming foams (AFFFs). Given the limited availability of chemical standards, capturing the total amount of PFAS is challenging. Thus, the total oxidizable precursor (TOP) assay has been developed to estimate the total amount of PFAS via the oxidative conversion of precursors into perfluorocarboxylic acids (PFCAs). This study aims to enhance the robustness of the TOP assay by replacing heat activation with UV activation. We evaluated the molar yields of known precursors in water in the presence of varying levels of Suwannee River natural organic matter (SRNOM) and in two soils. The impact of UV activation was also evaluated in two soils spiked with three well-characterized AFFFs, six AFFF-impacted field soils, and nine rinse samples of AFFF-impacted stainless-steel pipe. In the presence of 100 mg/L SNROM, 6:2 fluorotelomer sulfonate (FTS), 8:2 FTS, and N-ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA) in deionized water had good molar recovery as PFCAs (average of 102 ± 9.8 %); at 500 mg/L SNROM, the recovery significantly dropped to an average of 51 ± 19 %. In two soils (with 4 % and 8.8 % organic matter) with individual precursor spikes, the average molar recovery was 101 ± 9.4 %, except N-EtFOSAA, which had a reduced recovery in the soil with 8.8 % organic matter (OM). UV-activated assays outperformed heat-activated ones, especially in AFFF-impacted soils and pipe extract samples, with an average of 1.4-1.5× higher PFCA recovery. In almost all test samples, UV activation resulted in a notable shift towards longer PFCA chain lengths, particularly for samples with high OM content. The study confirmed the advantages of UV activation, including a significantly shortened exposure time (1 h vs. 6 h) and reduced matrix effects from OM due to the dual functions of UV in activating persulfate and photodegrading OM.
Collapse
Affiliation(s)
- Caitlin M Glover
- Department of Civil Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada
| | - Faezeh Pazoki
- Department of Civil Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada
| | - Gabriel Munoz
- Département de chimie, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Sébastien Sauvé
- Département de chimie, Université de Montréal, Montréal, QC H2V 0B3, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada.
| |
Collapse
|