1
|
Horvath B, Halasz J, Tanner NN, Kohler ZM, Trencsenyi G, Juhasz L, Rovo L, Kiss A, Keller-Pinter A. Tilorone attenuates high-fat diet-induced hepatic steatosis by enhancing BMP9-Smad1/5/8 signaling. GeroScience 2025:10.1007/s11357-025-01685-8. [PMID: 40423936 DOI: 10.1007/s11357-025-01685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/27/2025] [Indexed: 05/28/2025] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing and is caused by excessive fat deposition in the liver due to non-alcoholic factors. Aging is a major risk factor for the development and progression of MASLD. In this study, we investigated the metabolic effects of tilorone, a synthetic small molecule, in a high-fat diet (HFD) mouse model, with a focus on the liver function and signaling. We demonstrate that tilorone attenuated HFD-induced steatosis by restoring bone morphogenetic protein 9 (BMP9)-Smad1/5/8 signaling and upregulating peroxisome proliferator-activated receptor gamma (PPARγ) expression. Tilorone reduced HFD-induced increases in body weight, adipose tissue and liver weight, and blood glucose levels, and improved glucose tolerance in HFD mice. PET/MRI imaging demonstrated enhanced 18FDG (18F-fluoro-2-deoxyglucose) uptake in liver, skeletal muscle, adipose tissue, and myocardium of tilorone-treated HFD animals. Histological analysis showed that tilorone reduced the HFD-induced diffuse, macrovesicular steatosis (S3/3), and machine learning-based image analysis revealed a decrease in lipid droplet size and lipid content. HFD caused the disappearance of liver glycogen, but tilorone increased glycogen levels. High-resolution respirometry indicated that tilorone reduced HFD-induced increases in mitochondrial complex II-linked oxidative phosphorylation and complex IV activity. These findings revealed the beneficial effects of tilorone on HFD and highlight its therapeutic potential in MASLD, particularly given that tilorone is a synthetic small molecule and can be administered orally. Further studies are required to explore its clinical application.
Collapse
Affiliation(s)
- Barnabas Horvath
- Department of Biochemistry, Albert Szent-Gyorgyi Medical School, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Judit Halasz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Norman Noel Tanner
- Department of Biochemistry, Albert Szent-Gyorgyi Medical School, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Zoltan Marton Kohler
- Department of Biochemistry, Albert Szent-Gyorgyi Medical School, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Gyorgy Trencsenyi
- Department of Medical Imaging, Divison of Nuclear Medicine and Translation Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Juhasz
- Institute of Surgical Research, Albert Szent-Gyorgyi Medical School, University of Szeged, Szeged, Hungary
| | - Laszlo Rovo
- Department of Oto- Rhino- Laryngology and Head and Neck Surgery, University of Szeged, Szeged, Hungary
| | - Andras Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Aniko Keller-Pinter
- Department of Biochemistry, Albert Szent-Gyorgyi Medical School, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
- Department of Internal Medicine, Albert Szent-Gyorgyi Medical School, University of Szeged, Szeged, Hungary.
| |
Collapse
|
2
|
Wei G, Shen FJ, Liu JL, Zhao JH, Xie RR, Lu J, Zhang CY, Wang Y, Shi TT, Yang FY, Chen SQ, Huang YJ, Yang JK. Resinacein S, a novel triterpenoid from functional mushroom Ganoderma resinaceum, curbs obesity by regulating thermogenesis and energy metabolism. J Food Sci 2025; 90:e70161. [PMID: 40243376 DOI: 10.1111/1750-3841.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/12/2025] [Accepted: 03/07/2025] [Indexed: 04/18/2025]
Abstract
Ganoderma mushrooms are popularly used as dietary supplements to promote health around the world. However, their potential applications for the prevention and treatment of obesity needs to be further investigated. In this study, we isolated a novel triterpenoid from Ganoderma resinaceum, Resinacein S (Res S), and determined its absolute configuration. We reported that Res S treatment significantly inhibited the high-fat HF diet-induced body weight gain though increased thermogenesis and energy metabolism. Specifically, treatment with Res S promoted brown adipose tissue activation and browning of inguinal white adipose tissue, improving whole-body glucose and lipid homeostasis. Mechanistically, Res S treatment induced the expression of thermogenic genes and related protein, for example, uncoupling protein 1 and mitochondrial biogenesis in a cell-autonomous manner by activating the AMPK-PGC1α signaling pathway. These findings identify Res S as a potential therapeutic alternative for obesity in the setting of its increasingly high prevalence. HIGHLIGHTS: Resinacein S (Res S) exhibited potent anti-obesity effects in high-fat diet-fed mice; Res S treatment significantly promoted brown adipose tissue activation and browning of inguinal white adipose tissue; Res S treatment stimulated UCP1 expression and enhanced mitochondrial function; Res S induced adipocyte thermogenic activity through activating the AMPK-PGC1α axis.
Collapse
Affiliation(s)
- Gang Wei
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Feng-Jie Shen
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jun-Li Liu
- Henan Key Laboratory of Neural Regeneration, Henan International Joint Laboratory of Neurorestoratology for Senile Dementia, Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Jian-Hua Zhao
- Henan Key Laboratory of Neural Regeneration, Henan International Joint Laboratory of Neurorestoratology for Senile Dementia, Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Rong-Rong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Lu
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chen-Yang Zhang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ting-Ting Shi
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Fang-Yuan Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shu-Qin Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yan-Jie Huang
- College of Life Science, Tarim University, Alar, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Song W, Yu Y, Wang S, Cui Z, Zhu Q, Liu W, Wei S, Chi J. Metabolic reprogramming shapes the immune microenvironment in pancreatic adenocarcinoma: prognostic implications and therapeutic targets. Front Immunol 2025; 16:1555287. [PMID: 40191200 PMCID: PMC11968369 DOI: 10.3389/fimmu.2025.1555287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Pancreatic adenocarcinoma (PAAD) is characterized by a profoundly immunosuppressive tumor microenvironment (TME) that limits the efficacy of immunotherapy. Emerging evidence suggests that tumor-specific metabolic reprogramming may drive disease progression and shape the immune landscape in PAAD. Methods We integrated multi-omics data from TCGA, GEO, and ICGC to identify key metabolism-related genes (MRGs) that influence immune cell infiltration, tumor progression, and patient survival. Based on nine pivotal MRGs (including ANLN, PKMYT1, and HMGA1), we developed and validated a novel metabolic-prognostic index (MPI). Functional enrichment analyses were conducted to elucidate the metabolic pathways associated with different MPI risk groups. In vitro experiments and drug sensitivity analyses were performed to confirm the oncogenic role of selected MRGs and to explore their therapeutic implications. Results The MPI effectively stratified patients into high- and low-risk groups. High-MPI scores correlated with poor overall survival, elevated tumor mutation burden (TMB), and an immunosuppressive TME, evidenced by reduced CD8⁺ T-cell infiltration and increased expression of immune checkpoints (PD-L1, TGF-β). Functional enrichment revealed glycolysis and folate biosynthesis as dominant pathways in high-MPI groups, whereas fatty acid metabolism prevailed in low-MPI groups. Experimental validation underscored the role of ANLN in promoting epithelial-mesenchymal transition (EMT) and immune evasion via NF-κB signaling. ANLN knockdown significantly reduced glycolytic activity, tumor cell migration, and immune evasion. Drug sensitivity analyses indicated resistance to gemcitabine but sensitivity to afatinib in high-MPI patients. Although TIDE analysis predicted immune checkpoint inhibitor (ICI) resistance in high-MPI tumors, a subset of patients showed favorable responses to anti-PD-L1 therapy. Discussion These findings provide a comprehensive framework for understanding how metabolic reprogramming shapes PAAD's immunosuppressive TME and affects treatment outcomes. By accurately stratifying patients, the MPI serves as a promising tool to guide therapeutic decisions, including targeted therapy selection and immunotherapy prediction, ultimately offering potential for more personalized management of PAAD.
Collapse
Affiliation(s)
- Weihua Song
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yabin Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Siqi Wang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyi Cui
- Department of Public Health, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Qiusi Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Haerbin, China
| | - Wangrui Liu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Baise, Baise, China
| | - Jiachang Chi
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Teo JMN, Chen W, Ling GS. Neutrophil plasticity in liver diseases. J Leukoc Biol 2025; 117:qiae222. [PMID: 39383213 DOI: 10.1093/jleuko/qiae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024] Open
Abstract
The liver has critical digestive, metabolic, and immunosurveillance roles, which get disrupted during liver diseases such as viral hepatitis, fatty liver disease, and hepatocellular carcinoma. While previous research on the pathological development of these diseases has focused on liver-resident immune populations, such as Kupffer cells, infiltrating immune cells responding to pathogens and disease also play crucial roles. Neutrophils are one such key population contributing to hepatic inflammation and disease progression. Belonging to the initial waves of immune response to threats, neutrophils suppress bacterial and viral spread during acute infections and have homeostasis-restoring functions, whereas during chronic insults, they display their plastic nature by responding to the inflammatory environment and develop new phenotypes alongside longer life spans. This review summarizes the diversity in neutrophil function and subpopulations present at steady state, during liver disease, and during liver cancer.
Collapse
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Faculty Administration Wing, 21 Sassoon Road, Pokfulam, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, HK Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
5
|
Bianchi MG, Casati L, Sauro G, Taurino G, Griffini E, Milani C, Ventura M, Bussolati O, Chiu M. Biological Effects of Micro-/Nano-Plastics in Macrophages. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:394. [PMID: 40072197 PMCID: PMC11901536 DOI: 10.3390/nano15050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The environmental impact of plastics is worsened by their inadequate end-of-life disposal, leading to the ubiquitous presence of micro- (MPs) and nanosized (NPs) plastic particles. MPs and NPs are thus widely present in water and air and inevitably enter the food chain, with inhalation and ingestion as the main exposure routes for humans. Many recent studies have demonstrated that MPs and NPs gain access to several body compartments, where they are taken up by cells, increase the production of reactive oxygen species, and lead to inflammatory changes. In most tissues, resident macrophages engage in the first approach to foreign materials, and this interaction largely affects the subsequent fate of the material and the possible pathological outcomes. On the other hand, macrophages are the main organizers and controllers of both inflammatory responses and tissue repair. Here, we aim to summarize the available information on the interaction of macrophages with MPs and NPs. Particular attention will be devoted to the consequences of this interaction on macrophage viability and functions, as well as to possible implications in pathology.
Collapse
Affiliation(s)
- Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
| | - Lavinia Casati
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (L.C.); (G.S.)
| | - Giulia Sauro
- Department of Health Sciences, University of Milan, 20122 Milan, Italy; (L.C.); (G.S.)
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| | - Erika Griffini
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| | - Christian Milani
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy
| | - Marco Ventura
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy; (C.M.); (M.V.)
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.B.); (G.T.); (E.G.)
| |
Collapse
|
6
|
An G, Song J, Ying W, Lim W. Overview of the hazardous impacts of metabolism-disrupting chemicals on the progression of fatty liver diseases. Mol Cell Toxicol 2025; 21:387-397. [PMID: 40160987 PMCID: PMC11947047 DOI: 10.1007/s13273-025-00521-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 04/02/2025]
Abstract
Background Given the global increase in obesity, metabolic dysfunction-associated steatotic liver disease (MASLD) is a major health concern. Because the liver is the primary organ for xenobiotic metabolism, the impact of environmental stressors on liver homeostasis and MASLD has garnered significant interest over the past few decades. The concept of metabolism-disrupting chemicals (MDCs) has been introduced to underscore the importance of environmental factors in metabolic homeostasis. Recent epidemiological and biological studies suggest a causal link between exposure to MDCs and prevalence and progression of MASLD. Objective This review aims to introduce the emerging concept of MDCs and their representative toxic mechanisms. In particular, this review focuses on broadening the understanding of their impacts on MASLD or metabolic dysfunction-associated steatohepatitis (MASH) progression. Result Recent research has highlighted the environmental contaminants, such as heavy metals, microplastics, and pesticides, have the potential to influence hepatic metabolism and aggravate MASLD/MASH progression. These MDCs not only directly affect lipid metabolism in hepatocytes but also affect other cell types, such as immune cells and stellate cells, as well as the gut-liver axis. Conclusion Collectively, these findings contribute to establishing a well-defined adverse outcome pathway and identify novel therapeutic options for liver diseases associated with pollutants.
Collapse
Affiliation(s)
- Garam An
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
| | - Whasun Lim
- Department of Biological Sciences, Institute of Basic Science, College of Science, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| |
Collapse
|
7
|
Dan KB, Yoo JY, Min H. The Emerging Threat of Micro- and Nanoplastics on the Maturation and Activity of Immune Cells. Biomol Ther (Seoul) 2025; 33:95-105. [PMID: 39663987 PMCID: PMC11704408 DOI: 10.4062/biomolther.2024.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024] Open
Abstract
With the increasing use of plastics worldwide, the amount of plastic waste being discarded has also risen. This plastic waste undergoes physical and chemical processes, breaking down into smaller particles known as microplastics (MPs) or nanoplastics (NPs). Advances in technology have enhanced our ability to detect these smaller particles, and it has been confirmed that plastics can be found in marine organisms as well as within the human body. However, research on the effects of MPs or NPs on living organisms has only recently been started, and our understanding remains limited. Studies on the immunological impacts are still ongoing, revealing that MPs and NPs can differentially affect various immune cells based on the material, size, and shape of the plastic particles. In this review, we aim to provide a comprehensive understanding of the effects of MPs and NPs on the immune system. We will also explore the methods for plastic removal through physicochemical, microbial, or biological means.
Collapse
Affiliation(s)
- Kang-Bin Dan
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Yoon Yoo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
8
|
Wang D, Chen G, Li L, Wen S, Xie Z, Luo X, Zhan L, Xu S, Li J, Wang R, Wang Q, Yu G. Reducing language barriers, promoting information absorption, and communication using fanyi. Chin Med J (Engl) 2024; 137:1950-1956. [PMID: 39039634 PMCID: PMC11332769 DOI: 10.1097/cm9.0000000000003242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 07/24/2024] Open
Abstract
ABSTRACT Interpreting genes of interest is essential for identifying molecular mechanisms, but acquiring such information typically involves tedious manual retrieval. To streamline this process, the fanyi package offers tools to retrieve gene information from sources like National Center for Biotechnology Information (NCBI), significantly enhancing accessibility. Additionally, understanding the latest research advancements and sharing achievements are crucial for junior researchers. However, language barriers often restrict knowledge absorption and career development. To address these challenges, we developed the fanyi package, which leverages artificial intelligence (AI)-driven online translation services to accurately translate among multiple languages. This dual functionality allows researchers to quickly capture and comprehend information, promotes a multilingual environment, and fosters innovation in academic community. Meanwhile, the translation functions are versatile and applicable beyond biomedicine research to other domains as well. The fanyi package is freely available at https://github.com/YuLab-SMU/fanyi .
Collapse
Affiliation(s)
- Difei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guannan Chen
- Comprehensive Technology Center of Lianyungang Customs, Lianyungang, Jiangsu 222042, China
| | - Lin Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shaodi Wen
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Zijing Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Junrui Li
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Rui Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
9
|
Li D, Zhang Z, Zhang C, Guo Q, Chen C, Peng X. Unraveling the connection between Hashimoto's Thyroiditis and non-alcoholic fatty liver disease: exploring the role of CD4 +central memory T cells through integrated genetic approaches. Endocrine 2024; 85:751-765. [PMID: 38400881 DOI: 10.1007/s12020-024-03745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Exploring the connection between Hashimoto's thyroiditis (HT) and non-alcoholic fatty liver disease (NAFLD) through integrated genetic approaches. METHODS We utilized integrated genetic approaches, such as single-cell RNA sequencing (scRNA-seq) data analysis, Mendelian Randomization (MR), colocalization analysis, cell communication, and metabolic analyses, to investigate potential correlations between HT and NAFLD. RESULTS Through the integrated analysis of scRNA-seq data from individuals with HT, NAFLD, and healthy controls, we observed an upregulation in the proportion of CD4+central memory (CD4+CM) T cells among T cells in both diseases. A total of 63 differentially expressed genes (DEGs) were identified in the CD4+CM cells after the differential analysis. By using MR, 8 DEGs (MAGI3, CSGALNACT1, CAMK4, GRIP1, TRAT1, IL7R, ERN1, and MB21D2) were identified to have a causal relationship with HT, and 4 DEGs (MAGI3, RCAN3, DOCK10, and SAMD12) had a causal relationship with NAFLD. MAGI3 was found to be causally linked to both HT and NAFLD. Therefore, MAGI3 was designated as the marker gene. Reverse MR and Steiger filtering showed no evidence of reverse causality. Colocalization analyses further indicated close links between MAGI3 and HT as well as NAFLD. Finally, based on the expression levels of MAGI3, we stratified CD4+CM cells into two subsets: MAGI3+CD4+CM cells and MAGI3-CD4+CM cells. Functional analyses revealed significant differences between the two subsets, potentially related to the progression of the two diseases. CONCLUSION This study delves into the potential connections between HT and NAFLD through integrated genetic methods. Our research reveals an elevated proportion of CD4+CM cells within T cells in both HT and NAFLD. Through MR and colocalization analysis, we identify specific genes causally linked to HT and NAFLD, such as MAGI3. Ultimately, based on MAGI3 expression levels, we categorize CD4+CM cells into MAGI3+CD4+CM cells and MAGI3-CD4+CM cells, uncovering significant differences between them through functional analyses.
Collapse
Affiliation(s)
- Dairui Li
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zeji Zhang
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Cheng Zhang
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiannan Guo
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chen Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinzhi Peng
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
10
|
Lu YY, Hua W, Lu L, Tian M, Huang Q. The size-dependence and reversibility of polystyrene nanoplastics-induced hepatic pyroptosis in mice through TXNIP/NLRP3/GSDMD pathway. Toxicol Res (Camb) 2024; 13:tfae106. [PMID: 39015793 PMCID: PMC11247830 DOI: 10.1093/toxres/tfae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
As emerging environmental contaminants, nanoplastics (NPs) are progressively accumulating in terrestrial and aquatic ecosystems worldwide, posing a potential threat to human health. The liver is considered as one of the primary organs targeted by NPs accumulation in living organisms. However, there remains a large knowledge gap concerning NPs-induced hepatotoxicity. In this study, we examined the impact of chronic exposure to environmentally relevant doses of polystyrene (PS) NPs on hepatic pyroptosis in mice. The results demonstrated that both particle sizes of PS-NPs (100 nm and 500 nm) significantly triggered pyroptosis in the mouse liver, as evidenced by the upregulation of GSDMD-N protein levels; moreover, this pyroptotic effect induced by 100 nm PS-NPs was more pronounced compared to that of 500 nm PS-NPs. Mechanistically, exposure to 100 nm and 500 nm PS-NPs resulted in an upregulation of TXNIP protein expression, thereby activating NLRP3 inflammasome and subsequently inducing inflammatory responses and pyroptosis. Notably, following the termination of PS-NPs exposure and a subsequent recovery period of 50 days, PS-NPs-mediated inflammation and pyroptosis via TXNIP/NLRP3 pathway were effectively ameliorated, even returning to levels close to the baseline. Collectively, our findings provide novel evidence for the size-dependence and reversibility of NPs-induced hepatic pyroptosis through TXNIP/NLRP3/GSDMD pathway in vivo.
Collapse
Affiliation(s)
- Yan-Yang Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Weizhen Hua
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lu Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Meiping Tian
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
11
|
Boran T, Zengin OS, Seker Z, Akyildiz AG, Kara M, Oztas E, Özhan G. An evaluation of a hepatotoxicity risk induced by the microplastic polymethyl methacrylate (PMMA) using HepG2/THP-1 co-culture model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28890-28904. [PMID: 38564126 PMCID: PMC11058773 DOI: 10.1007/s11356-024-33086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Inappropriate disposal of plastic wastes and their durability in nature cause uncontrolled accumulation of plastic in land/marine ecosystems, also causing destructive effects by bioaccumulating along the food chain. Microplastics may cause chronic inflammation in relation to their permanent structures, especially through oxidative stress and cytotoxic cellular damage, which could increase the risk of cancer development. The accumulation of microplastics in the liver is a major concern, and therefore, the identification of the mechanisms of their hepatotoxic effects is of great importance. Polymethyl methacrylate (PMMA) is a widely used thermoplastic. It has been determined that PMMA disrupts lipid metabolism in the liver in various aquatic organisms and causes reproductive and developmental toxicity. PMMA-induced hepatotoxic effects in humans have not yet been clarified. In our study, the toxic effects of PMMA (in the range of 3-10 μm) on the human liver were investigated using the HepG2/THP-1 macrophage co-culture model, which is a sensitive immune-mediated liver injury model. Cellular uptake of micro-sized PMMA in the cells was done by transmission electron microscopy. Determination of its effects on cell viability and inflammatory response, oxidative stress, along with gene and protein expression levels that play a role in the mechanism pathways underlying the effects were investigated. The results concluded that inflammation, oxidative stress, and disruptions in lipid metabolism should be the focus of attention as important underlying causes of PMMA-induced hepatotoxicity. Our study, which points out the potential adverse effects of microplastics on human health, supports the literature information on the subject.
Collapse
Affiliation(s)
- Tugce Boran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ozge Sultan Zengin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Zehra Seker
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehtap Kara
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Ezgi Oztas
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
12
|
Chiang CC, Yeh H, Shiu RF, Chin WC, Yen TH. Impact of microplastics and nanoplastics on liver health: Current understanding and future research directions. World J Gastroenterol 2024; 30:1011-1017. [PMID: 38577182 PMCID: PMC10989496 DOI: 10.3748/wjg.v30.i9.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
With continuous population and economic growth in the 21st century, plastic pollution is a major global issue. However, the health concern of microplastics/ nanoplastics (MPs/NPs) decomposed from plastic wastes has drawn public attention only in the recent decade. This article summarizes recent works dedicated to understanding the impact of MPs/NPs on the liver-the largest digestive organ, which is one of the primary routes that MPs/NPs enter human bodies. The interrelated mechanisms including oxidative stress, hepatocyte energy re-distribution, cell death and autophagy, as well as immune responses and inflammation, were also featured. In addition, the disturbance of microbiome and gut-liver axis, and the association with clinical diseases such as metabolic dysfunction-associated fatty liver disease, steatohepatitis, liver fibrosis, and cirrhosis were briefly discussed. Finally, we discussed potential directions in regard to this trending topic, highlighted current challenges in research, and proposed possible solutions.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hsuan Yeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Ruei-Feng Shiu
- Center of Excellence for The Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wei-Chun Chin
- Department of Materials Science and Engineering, University of California Merced, Merced, CA 95343, United States
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
13
|
Lonardo A. Is liver fibrosis a risk factor for gynecological cancers? METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2023.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
A recent study by Crudele et al. reported on the association between surrogate indices of liver fibrosis and risk of gynecological cancers among dysmetabolic women. To put this study in context, notions regarding sex dimorphism in nonalcoholic fatty liver disease (NAFLD) are discussed. Additionally, meta-analytic reviews regarding the risk of extrahepatic cancers are reviewed. Next, I discuss the relationship of metabolic dysfunction-associated fatty liver disease (MAFLD) with extrahepatic cancers, notably including the breast and cancers of the female reproductive systems in humans. The pathomechanisms potentially accounting for this association include genetics, deregulated sex hormones, chronic subclinical inflammatory state, dysmetabolic milieu, oxidative stress, gut dysbiosis, environmental pollution, and altered immune surveillance.
Collapse
|