1
|
Brito BC, Peleja JRP, Melo S, de Freitas Goch YG, Viana AP. Relationship of mercury bioaccumulation with seasonality and feeding habits of fish species caught upstream and downstream of the Curuá-Una hydroelectric dam in the Brazilian Amazon. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:38-51. [PMID: 39424764 DOI: 10.1007/s10646-024-02808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
Hydroelectric plants impact the dynamics of mercury accumulation and transfer to aquatic ecosystems and organisms. This study aimed to determine total mercury (THg) concentration in filtered water, aquatic macrophytes, and fish and assess the influence of fluvial regime (low-water, rising-water, and high-water) and the feeding habits of fish species caught upstream and downstream of the Curuá-Una hydroelectric dam in the Brazilian Amazon. THg levels were determined by cold-vapor atomic fluorescence spectrometry. THg concentration in filtered water was higher (5.3-11.2 ng L-1) during the low-water period. THg concentration in fish ranged from 0.075 to 1.160 µg g-1 in specimens caught downstream and from 0.014 to 1.036 µg g-1 in specimens caught upstream of the dam. The highest THg concentrations were detected in specimens of the piscivorous species Acestrorhynchus falcirostris (1.161 µg g-1) caught at downstream sites. There were significant correlations of THg concentration with the trophic level (Analysis of Variance; p ≤ 0.001) of fish species and fluvial regime (Analysis of Variance; p ≤ 0.001). The macrophyte Utricularia foliosa contained the highest THg levels in leaf tissues in the low-water period (71.4 µg g-1). It is concluded that THg concentration varies between fish trophic levels and fluvial regimes. Macrophytes contribute to enhancing mercury transfer and availability along the aquatic trophic chain.
Collapse
Affiliation(s)
- Brendson C Brito
- Instituto Federal de Educação, Ciência e Tecnologia do Pará, Campus Itaituba, Itaituba, Pará, Brazil.
- Programa de Doutorado em Sociedade, Natureza e Desenvolvimento, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil.
- Instituto de Ciência e Tecnologia das Águas, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil.
| | - José R P Peleja
- Laboratório de Biologia Ambiental, Instituto de Ciência e Tecnologia das Águas, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
| | - Sergio Melo
- Instituto de Ciência e Tecnologia das Águas, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
| | - Ynglea G de Freitas Goch
- Laboratório de Biologia Ambiental, Instituto de Ciência e Tecnologia das Águas, Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil
| | | |
Collapse
|
2
|
Salgado J, Jaramillo-Monroy C, Link A, Lopera-Congote L, Velez MI, Gonzalez-Arango C, Yang H, Panizzo VN, McGowan S. Riverine connectivity modulates elemental fluxes through a 200- year period of intensive anthropic change in the Magdalena River floodplains, Colombia. WATER RESEARCH 2024; 268:122633. [PMID: 39490097 DOI: 10.1016/j.watres.2024.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Tropical floodplain lakes are increasingly impacted by human activities, yet their pathways of spatial and temporal degradation, particularly under varying hydrological connectivity regimes and climate change, remain poorly understood. This study examines surface-sediment samples and 210Pb-dated sediment cores from six floodplain lakes, representing a gradient in hydrological connectivity in the lower Magdalena River Basin, Colombia. We analysed temporal and spatial variations in several sediment biogeochemical indicators: the concentration and flux of nutrients, heavy metals, and organic matter (OM), and redox conditions, flooding and erosion. Multiple factor analysis (MFA) of surface-sediments identified redox conditions, OM, flooding, heavy metals and lake connectivity as the main contributors to spatial variability within- and between-lakes sediments, accounting for 48 % of the total variation. Additionally, no clear distinction was found between littoral and open-water sediment characteristics. Isolated lakes sediments exhibited reductive conditions rich in OM and nutrients, whereas connected lakes sediments showed greater heavy metal enrichment and higher concentrations of coarse river-fed material. Generalised additive models identified significant changes in the biogeochemical indicators since the late 1800s, that accelerated post-1980s. Shifts in OM, erosion, flooding, redox conditions, land-cover change, heavy metals and climate were identified by MFA as the main drivers of change, explaining 60 %-71 % of the variation in the connected lakes and 53 %-72 % in the isolated lakes. Post-1980s, connected lakes transitioned from conditions of higher accumulation of OM and little erosion to higher accumulation of heavy metals and river-fed material. Conversely, isolated lakes, shifted from detrital-heavy metal-rich sediments to OM-, and nutrient-rich, reductive sediments. Sedimentation rates also surged post-1980s, particularly in highly connected lakes, from 0.14 ± 0.07 g cm² yr⁻¹ to 0.5 ± 0.5 g cm² yr⁻¹, with elevated fluxes of metals, OM and nutrients. These changes in sediment biogeochemistry align with deforestation, river regulation and prolonged dry periods, highlighting the complexities behind establishing reliable reference conditions for pollution assessments in large, human-impacted tropical river systems.
Collapse
Affiliation(s)
- Jorge Salgado
- Department of Geography, University College London (UCL), Gower Street, London UK; Programa de Ingeniería Civil, Universidad Católica de Colombia, Bogotá, Colombia; Smithsonian Tropical Research Institute, Panama City, Republic of Panamá, Panamá.
| | | | - Andrés Link
- Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | | | - Maria I Velez
- Department of Earth Sciences, University of Regina, Regina, SK, Canada
| | | | - Handong Yang
- Department of Geography, University College London (UCL), Gower Street, London UK
| | | | - Suzanne McGowan
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| |
Collapse
|
3
|
Monteiro LC, Vieira LCG, Bernardi JVE, Recktenvald MCNDN, Nery AFDC, Fernandes IO, de Miranda VL, da Rocha DMS, de Almeida R, Bastos WR. Mercury distribution, bioaccumulation, and biomagnification in riparian ecosystems from a neotropical savanna floodplain, Araguaia River, central Brazil. ENVIRONMENTAL RESEARCH 2024; 252:118906. [PMID: 38609069 DOI: 10.1016/j.envres.2024.118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Litterfall is the main source of dry deposition of mercury (Hg) into the soil in forest ecosystems. The accumulation of Hg in soil and litter suggests the possibility of transfer to terrestrial invertebrates through environmental exposure or ingestion of plant tissues. We quantified total mercury (THg) concentrations in two soil layers (organic: 0-0.2 m; mineral: 0.8-1 m), litter, fresh leaves, and terrestrial invertebrates of the Araguaia River floodplain, aiming to evaluate the THg distribution among terrestrial compartments, bioaccumulation in invertebrates, and the factors influencing THg concentrations in soil and invertebrates. The mean THg concentrations were significantly different between the compartments evaluated, being higher in organic soil compared to mineral soil, and higher in litter compared to mineral soil and fresh leaves. Soil organic matter content was positively related to THg concentration in this compartment. The order Araneae showed significantly higher Hg concentrations among the most abundant invertebrate taxa. The higher Hg concentrations in Araneae were positively influenced by the concentrations determined in litter and individuals of the order Hymenoptera, confirming the process of biomagnification in the terrestrial trophic chain. In contrast, the THg concentrations in Coleoptera, Orthoptera and Hymenoptera were not significantly related to the concentrations determined in the soil, litter and fresh leaves. Our results showed the importance of organic matter for the immobilization of THg in the soil and indicated the process of biomagnification in the terrestrial food web, providing insights for future studies on the environmental distribution of Hg in floodplains.
Collapse
Affiliation(s)
- Lucas Cabrera Monteiro
- Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil; Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil; Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil.
| | - Ludgero Cardoso Galli Vieira
- Núcleo de Estudos e Pesquisas Ambientais e Limnológicas, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - José Vicente Elias Bernardi
- Laboratório de Geoestatística e Geodésia, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | | | | | - Iara Oliveira Fernandes
- Programa de Pós-Graduação em Ciências Ambientais, Faculdade UnB Planaltina, Universidade de Brasília, Planaltina, DF, Brazil
| | - Vinicius Lima de Miranda
- Programa de Pós-Graduação em Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Ronaldo de Almeida
- Laboratório de Biogeoquímica Ambiental, Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | | |
Collapse
|
4
|
Fernandes IO, Monteiro LC, de Miranda VL, Rodrigues YOS, de Freitas Muniz DH, de Castro Paes É, Bernardi JVE. Mercury distribution in organisms, litter, and soils of the Middle Araguaia floodplain in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20925-20940. [PMID: 38379047 DOI: 10.1007/s11356-024-32317-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Mercury (Hg) is a chemical element that, depending on its concentration, may become toxic to living organisms due to the ability of Hg to bioaccumulate in food chains. In this study, we collected samples of soil, litter, and organisms in the Middle Araguaia floodplain, Brazil. Total mercury (THg) concentrations in litter were significantly higher (p < 0.0001) than that in soil, ranging from 10.68 ± 0.55 to 48.94 ± 0.13 and 20.80 ± 1.07 to 55 .19 ± 1.59 ng g-1, respectively. Total mercury concentration levels in soil showed a linear, inversely proportional relationship with soil organic matter (SOM) contents and soil pH, consistent with the geochemical behavior of chemical elements in flooded environments. Ten orders of organisms were identified, and the average THg concentrations determined in their bodies were up to 20 times higher than those in soil and litter. We found a significant linear relationship between the levels of THg in litter and those found in soil organisms, thereby allowing the prediction of THg concentration levels in soil organisms through the analysis of litter at the sample units. The different dynamics and feeding habits of soil organisms and the concentration of THg in these organisms may be influenced by the river's course. This study provides evidence of the bioaccumulation of THg in soil organisms in the floodplain of the Middle Araguaia River, an important river basin in the Brazilian savanna.
Collapse
Affiliation(s)
- Iara Oliveira Fernandes
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil.
| | - Lucas Cabrera Monteiro
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Vinícius Lima de Miranda
- Graduate Program in Zoology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Ygor Oliveira Sarmento Rodrigues
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil
| | - Daphne Heloisa de Freitas Muniz
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil
| | - Ésio de Castro Paes
- Graduate Program in Soils and Plant Nutrition, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - José Vicente Elias Bernardi
- Graduate Program in Environmental Sciences, Faculty UnB Planaltina, University of Brasília, Planaltina, Distrito Federal, 73345-010, Brazil
| |
Collapse
|