1
|
Zhang Q, Wang Y, Shang K, Fang H, Zhang G, Guidi Nissim W. Strategy on rapid selection of woody species for phytoremediation in soils contaminated with copper, lead and zinc in Shanghai. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:462-471. [PMID: 39523860 DOI: 10.1080/15226514.2024.2426772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The use of woody species for the remediation of heavy metal-contaminated soils is an environmentally friendly and economically viable strategy. This study investigates the phytoextraction abilities of 15 woody species for copper, lead and zinc in contaminated soil. The results indicated that all species showed phytoextraction ability, with metal concentrations varying from 5.59 to 27.45 mg·kg-1 for Cu, 2.79 to 16.75 mg·kg-1 for Pb and 22.13 to 185.72 mg·kg-1 for Zn in the stem tissues depending on the species. Pterocarya stenoptera, Paulownia fortunei and Salix matsudana were identified as the top performers in terms of overall phytoextraction capacity. Notably, their capacity to transport zinc exceeded that of copper and lead. The enrichment of copper, lead and zinc in the soil showed a synergistic effect in the presence of heavy metal. The distribution of heavy metals within plant tissues was affected by water content and the inherent toxicity of metals. The study highlights that the accumulation of tree biomass and water content in the stem play a significant role in determining the amount of heavy metals phytoextracted. This insight offers a quick method for the rapid selection of woody species for phytoremediation in urban soils contaminated with heavy metals.
Collapse
Affiliation(s)
- Qian Zhang
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Yanchun Wang
- Shanghai Landscape Architecture Construction Co., Ltd, Shanghai, China
| | - Kankan Shang
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Hailan Fang
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Guowei Zhang
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
2
|
Liu M, Feng Y, Wang M, Sun X, Qi CY, Yang X, Zhang D. Sedum alfredii Hance: A cadmium and zinc hyperaccumulating plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117588. [PMID: 39721422 DOI: 10.1016/j.ecoenv.2024.117588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The hyperaccumulating ecotype Sedum alfredii Hance is one of few Cd hyperaccumulators with Cd contents in leaves and stems up to 9000 mg/kg (dry weight, DW) and 6500 mg/kg (DW) respectively without displaying significant toxicity symptoms as reported in 2004. Numerous studies have been conducted to uncover the mystery of its hypertolerance and hyperaccumulation using high-throughput sequencing, biochemical and molecular techniques, mainly pointing to the root-microorganism interaction, restrained Cd storage in roots, efficient root-shoot translocation, effective cellular detoxification, and phloem-mediated metal remobilization. This also encourages studies on functional genes involved in metal transport, antioxidant, transcription regulation and stress response, providing candidates for genetic modification. Moreover, researchers have focused on the practical application and optimal managements in phytoremediation. Sedum alfredii Hance is of scientific significance as a model plant elucidating hypertolerance and hyperaccumulation traits or decontaminating heavy metals. More efforts are required to deepen the knowledge of Sedum alfredii Hance and provide theoretical guidance for practical phytoremediation.
Collapse
Affiliation(s)
- Mingying Liu
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ying Feng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Miao Wang
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xinglin Sun
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Chen Yinfei Qi
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China.
| |
Collapse
|
3
|
Coimbra ECL, Borges AC, Bastos ABC, Mounteer AH, Rosa AP. Effects of LED lights and cytokinin on the phytotreatment of simulated swine wastewater by Azolla spp.: Pollutant removal and biomass valorization. WATER RESEARCH 2024; 266:122423. [PMID: 39298903 DOI: 10.1016/j.watres.2024.122423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Phytoremediation is an eco-friendly and affordable option for tackling wastewater pollutants. The study focused on how light-emitting diodes (LED) light exposure, measured by intensity and duration (photoperiod), along with cytokinin, impacts Azolla microphylla's simulated swine wastewater treatment performance and biomass production. Under optimal treatment conditions, high removals of COD (89.2 % to 90.8 %), N-NH4+ (72.6 % to 91.2 %), N-NO3- (84.4 % to 88.6 %), Cu (75.4 % to 86.4 %), sulfamethoxazole (77.0 % to 79.0 %), P-PO43- (54.1 % to 59.9 %) and DOC (67.4 % to 71.3 %) while Zn presented a more moderate reduction (2.0 % to 9.7 %). Biomass productivity reached up to 34.8 t ha-1 yr-1. Protein production accounted for 23 % to 27 % of dry weight, while lipids ranged from 20 % to 34 % of dry biomass. Carbohydrate content varied from 8 % to 28 % of fresh weight. Higher light intensities, with both high or low values of photoperiods, and low concentrations of cytokinin were identified as optimal conditions for removal of almost all pollutants. However, pollutant removal was impacted differently by LED light and cytokinin concentration. In treatment conditions with the shortest photoperiods (8 h), the lowest residual Cu and Zn concentrations, whereas with longer photoperiods (24 h), the lowest residual concentrations of N-NH4+ and P-PO43- concentrations were recorded. On the other hand, SMX was the only parameter in which cytokinin had a clear influence on its removal, with the lowest residual concentration observed under 8-hour photoperiods combined with the lowest tested cytokinin concentrations (0.3 mg L-1). For residual COD and N-NO3-, no discernible pattern was evident for any of the analyzed factors. Therefore, the study demonstrates the potential for treating simulated swine wastewater using Azolla microphylla, aligned with its ability to produce biomass rich in high-value compounds.
Collapse
Affiliation(s)
| | - Alisson Carraro Borges
- Department of Agricultural Engineering, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil.
| | | | - Ann Honor Mounteer
- Department of Civil Engineering, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil
| | - André Pereira Rosa
- Department of Agricultural Engineering, Federal University of Viçosa, 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
4
|
Yu S, Sheng Q, Sahito ZA, Wang W, Xu S, Lian J, Du P, Tong W, Feng Y, Yang X. Harmonizing soil restoration and microbial diversity: Insights from a Two-Year field experiment with Sedum-Rice rotation systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175336. [PMID: 39134265 DOI: 10.1016/j.scitotenv.2024.175336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Phytoremediation coupled with agroproduction (PCA) model contributes to sustainable agriculture and environmental management. This study investigated the impact of continuous cropping early/late season rice (RR) and Sedum alfredii-rice rotation (SR) on soil physical and chemical properties, as well as their relationships with soil microbial community. In 2022, SR treatment significantly increased pH value and organic matter content by 7 % and 17 %, respectively, compared to the levels in 2020, while RR treatment showed no change. RR treatment resulted in a significant decrease in soil concentrations of Ca, Mg, and K by 18.42 %, 29.01 %, and 7.77 %, respectively. Furthermore, SR treatment saw reductions of 29.62 % in total Cd and 38.30 % in DTPA extractable Cd in the soil. Over the two years, both treatments notably influenced the diversity, structure, and network of the rhizosphere bacterial and fungal communities, which are crucial for nutrient cycling and plant health. Notably, SR treatment exhibited a more complex network compared to RR, suggesting a greater impact on the interconnected systems. Therefore, these findings highlight the potential of Sedum rotation system to rehabilitate contaminated soils while supporting agricultural practices, which is essential for food security and environmental sustainability. This research direction holds promise for future exploration and application in the fields of phytoremediation and agroecology.
Collapse
Affiliation(s)
- Song Yu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qi Sheng
- Shenergy Environmental Technology Co., Ltd, Room 506, Building 8, Xixi Octagon City, Wuchang Street, Zhejiang Province, People's Republic of China
| | - Zulfiqar Ali Sahito
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Wenkai Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shunan Xu
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Pengtao Du
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Wenbin Tong
- Agricultural Technology Promotion Center, Qujiang District, Quzhou City, Zhejiang Province, People's Republic of China.
| | - Ying Feng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
5
|
Gong Z, Liu L, Chou Z, Deng S, Tang J, Xiang W, Chen X, Li Y. Efficient cadmium-resistant plant growth-promoting bacteria loaded on pig bone biochar has higher efficiency in reducing cadmium phytoavailability and improving maize performance than on rice husk biochar. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135609. [PMID: 39216242 DOI: 10.1016/j.jhazmat.2024.135609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Green agriculture faced challenges due to the shortage of efficient cadmium (Cd)-resistant plant growth-promoting bacteria (CdR-PGPB) and their low survival rate and activity during application. In this study, a diverse range of efficient CdR-PGPB were isolated from the rhizosphere soil of Desmodium elegans, especially those with high phosphate-solubilizing capabilities (272.87-450.45 mg L-1). Two highly efficient CdR-PGPB namely, XH1 and XH3 were loaded on to rice husk biochar (RHB) and pig bone biochar (PBB), labelled as RHBM and PBBM respectively. This study aimed to explore their effectiveness and mechanisms in promoting maize growth in a Cd-contaminated planting system. Results showed that PBBM performed best among all treatments. It significantly decreased soil phytoavailable Cd by 53.19 % and Cd content in maize shoot by 85.89 %. It also increased soil available phosphorus by 145.72 %, soil alkaline phosphatase activity by 76.34 %, maize shoot/root biomass by 47.06 %/67.98 %, Chlorophyll (a/b) content by 66.80 %/134.13 % and peroxidase activity by 171.96 %. These results were achieved through the synergistic action of efficient CdR-PGPB and PBB. Therefore, PBBM proved to be a promising and innovative application technique for sustainable agricultural development in Cd-contaminated farmland ecosystems.
Collapse
Affiliation(s)
- Zhilian Gong
- College of Food and Biological Engineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China.
| | - Luqing Liu
- College of Food and Biological Engineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Zhengyan Chou
- College of Food and Biological Engineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Shuang Deng
- College of Food and Biological Engineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Jie Tang
- College of Food and Biological Engineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Wenliang Xiang
- College of Food and Biological Engineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Xuejiao Chen
- College of Food and Biological Engineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Yong Li
- Faculty of Environmental Engineering, Southwest Jiaotong University, Chengdu 610059, China
| |
Collapse
|
6
|
Menhas S, Hayat K, Lin D, Shahid M, Bundschuh J, Zhu S, Hayat S, Liu W. Citric acid-driven cadmium uptake and growth promotion mechanisms in Brassica napus. CHEMOSPHERE 2024; 368:143716. [PMID: 39515533 DOI: 10.1016/j.chemosphere.2024.143716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Citric acid (CA) is well-known for mitigating cadmium (Cd) toxicity in plants. Yet, the underlying mechanisms driving growth promotion, Cd detoxification/tolerance, and enhanced phytoremediation processes remain incompletely understood. This study investigated the effects of CA application (2.5 mM) on Brassica napus grown in Cd-contaminated (30 mg kg-1) growth medium through a controlled pot experiment. Cd exposure alone significantly impaired various plant physiological parameters in B. napus. Whereas CA application significantly (p < 0.05) enhanced physiological attributes, Cd detoxification and tolerance by modulating key genes involved in photosynthesis and Cd transport, including the metal-transporting P1B-type ATPases (Cd/zinc heavy metal-transporting ATPase 1; HMA1) and light-harvesting chlorophyll a/b-binding 3 (LHCB3). Notably, CA application increased Cd accumulation in stems and leaves by 4% and 35%, respectively, enhancing bioconcentration factors (BCF) by 12% in stems and 40% in leaves while reducing root BCF by 10%. This translocation was facilitated by the upregulation of HMA4, HMA2, and plant Cd resistance (PCR2) genes in plant leaves, improving Cd mobility within the plant. Furthermore, CA induced a 34% increase in phytochelatins and a 32% upregulation in metallothioneins, accompanied by a significant reduction in oxidative stress markers, including a 40% decrease in hydrogen peroxide and a 44% decline in malondialdehyde levels in leaves. Enhanced antioxidant enzyme activity and osmolyte accumulation further contributed to improved Cd detoxification/sequestration in leaves, reduced oxidative stress, and improved photosynthetic efficiency, resulting in enhanced plant biomass production and Cd tolerance. Transcriptomic analysis showed that CA treatment substantially influenced the expression of 12,291 differentially expressed genes (DEGs), with 750 common genes consistently downregulated in CK vs Cd treatment group but upregulated in Cd vs Cd-CA treatment group. Additionally, CA modulated 11 DEGs associated with 32 gene ontologies in the citrate pathway under Cd stress, highlighting its targeted regulatory effect on metabolic pathways involved in Cd stress response. This study offers novel insights into the synergistic role of CA in promoting plant growth and regulating Cd uptake in B. napus, highlighting its potential to enhance phytoremediation strategies.
Collapse
Affiliation(s)
- Saiqa Menhas
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Kashif Hayat
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China.
| | - Daohui Lin
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, 61100, Pakistan
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia; Groundwater Arsenic Within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, 4350, Toowoomba, Queensland, Australia
| | - Saiyong Zhu
- Zhejiang Ecological Civilization Academy, Anji, 313300, PR China; Department of Environmental Science, Zhejiang University, Hangzhou, 310058, PR China.
| | - Sikandar Hayat
- College of Medicine, Xian International University, Xian, 710000, Shaanxi, PR China
| | - Weiping Liu
- ZJP Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, PR China
| |
Collapse
|
7
|
Guo J, Liu H, Xu Y, Li L, Xin C. Ectopic expression of the yeast Mn 2+ transporter SMF2 enhances tolerance and resistance to cadmium and arsenic in transgenic Arabidopsis. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2103-2112. [PMID: 38973396 DOI: 10.1080/15226514.2024.2373974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Vesicular sequestration is a potential strategy for enhancing plant tolerance to cadmium (Cd) and arsenic (As). In this study, the ectopic overexpression of yeast-derived ScSMF2 in Arabidopsis thaliana was found to enhance the accumulation and tolerance of Cd and As in transgenic plants. ScSMF2 was localized on vacuole membranes and formed puncta structures in plant cells when agro-infiltrated for transient expression. Transgenic Arabidopsis showed less retardation on root elongation and shoot weight and more accumulation of Cd, As (III) and As (V) when cultured on medium containing Cd or As. Overexpression of ScSMF2 promoted accumulation of Cd and arsenic in transgenic Arabidopsis, which were over twice higher than in WT plants when cultured in soil. This study provides insights into the mechanisms involved in the vesicular sequestration of heavy metals in plant and presents a potential strategy for enhancing the phytoremediation capacity of plants toward heavy metals.
Collapse
Affiliation(s)
- Jiangbo Guo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, P.R. China
| | - Hanyang Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, P.R. China
| | - Yang Xu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, P.R. China
| | - Lu Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, P.R. China
| | - Cuihua Xin
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, P.R. China
| |
Collapse
|
8
|
Li Y, Yin Y, Du W, Guo H. Exploring phytoremediation potential of willow NJU513 for cadmium-contaminated soil with and without epibrassinolide treatment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109044. [PMID: 39178801 DOI: 10.1016/j.plaphy.2024.109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/06/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
There has been a growing concern over soil cadmium (Cd) pollution, underscoring the importance of finding effective remediation strategies. Willow trees have emerged as promising candidates for phytoremediation of Cd-contaminated soils. Nevertheless, the specific potential of a novel willow genotype, NJU513, in remediating Cd-polluted soil remains unexplored. Hence, the primary objectives of this study were twofold: firstly, to ascertain the suitability of the willow genotype NJU513 for remediating Cd-contaminated soil; and secondly, to elevate its remediation efficciency with the application of epibrassinolide (Brs). In the pot-culture experiment without Brs, its leaf and stem Cd concentrations were 203 mg kg-1 and 65.1 mg kg-1, with a bioaccumulation factor (BCF) of 20.8 and 6.68, respectively. In the pot-culture experiment with Brs, the corresponding Cd concentrations were 226 mg kg-1 and 59.2 mg kg-1, with a BCF of 23.1 and 6.06, respectively. In addition, the extracted Cd contents were higher in the Brs treatments (1.11-1.37 mg plant-1) than in the no-Brs treatments (0.78-0.96 mg plant-1) because Brs increased the plant biomass and leaf BCF. The mechanism underlying the Cd accumulation of NJU513 leaves with and without Brs was revealed by a transcriptome analysis. The expression levels of genes related to metal ion binding, channel activity, and transporters in leaves were up-regulated, which contributed to the high Cd accumulation and stress tolerance. Analyses of soil metabolites and bacteria in the presence and absence of Brs spraying on willow leaves indicated that soil organic compounds with carboxyl and amino groups may induce Cd activation and passivation, respectively. This study provides valuable insights for developing woody plant varieties that can be used for remediating Cd-contaminated soil.
Collapse
Affiliation(s)
- Yepu Li
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, School of Water Resources and Environment Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Li M, Heng Q, Hu C, Wang Z, Jiang Y, Wang X, He X, Yong JWH, Dawoud TM, Rahman SU, Fan J, Zhang Y. Phytoremediation efficiency of poplar hybrid varieties with diverse genetic backgrounds in soil contaminated by multiple toxic metals (Cd, Hg, Pb, and As). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116843. [PMID: 39128449 DOI: 10.1016/j.ecoenv.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Fifteen poplar varieties were used in a field trial to investigate the phytoremediation efficiency, stress resistance, and wood property of poplar hybrid varieties with diverse genetic backgrounds under the composite pollution of heavy metals. The coefficient of variation and clone repeatability for growth traits and Cd concentration were large. The Cd accumulation of poplar varieties 107 and QHQ reached 1.9 and 1.7 mg, respectively, followed by QHB, Ti, 69, and Pa, in which Cd accumulation reached 1.3 mg. Most of the intra-specific hybrid varieties (69, QH1, SL4, T3, and ZL46) had low Cd concentrations and small biomass, resulting in weak Cd accumulation and low phytoremediation efficiency for Cd-polluted soil. By contrast, the inter-sectional and inter-specific hybrid varieties exhibited better growth performance and accumulated higher concentrations of heavy metals than the intra-specific hybrids. The bioconcentration factor and translocation factor of Hg, As, and Pb were less than 1, indicating that poplars have low phytoremediation efficiency for these heavy metals. The hybrids between section Aigeiros and Tacamahaca (QHQ and QHB) and the inter-specific hybrid 107 within section Aigeiros were more resistant to composite heavy metal stress than the other poplar varieties were partially because of their high levels of free proline that exceeded 93 μg·g-1 FW. According to the correlation analysis of the concentrations of the different heavy metals, the poplar roots absorbed different heavy metals in a cooperative manner, indicating that elite poplar varieties with superior capacity for accumulating diverse heavy metals can be bred feasibly. Compared with the intra-specific hybrid varieties, the inter-sectional (QHQ and QHB) and inter-specific (107) hybrid varieties had higher pollution remediation efficiency, larger biomass, higher cellulose content, and lower lignin content, which is beneficial for pulpwood. Therefore, breeding and extending inter-sectional (QHQ and QHB) and inter-specific hybrid varieties can improve the phytoremediation of composite pollution.
Collapse
Affiliation(s)
- Mengge Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qimeng Heng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaobo Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiyong Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yawei Jiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xintong Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuelian He
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Science, Alanrp, Sweden.
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2455, Riyadh 11451, Saudi Arabia
| | - Siddiq Ur Rahman
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber Pakhtunkhwa 27200, Pakistan
| | - Junfeng Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Ma L, Liu Y, Sahito ZA, Liu C, Li Z, Yu C, Feng Y, Guo W. Intraspecific variation in tomato: Impact on production quality and cadmium phytoremediation efficiency in intercropping systems with hyperaccumulating plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116715. [PMID: 39002378 DOI: 10.1016/j.ecoenv.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Intercropping with hyperaccumulators can facilitate the safe utilization of cadmium-contaminated soil. However, the effectiveness of this approach is influenced by plant species and varieties, which necessitates research on optimal plant consortia. In this study, 8 tomato varieties (3 cherry tomatoes and 5 common large-fruit tomatoes) were intercropped with Sedum alfredii in a moderately Cd-contaminated vegetable field. The results showed that the Cd concentration in the fruits of common large-fruit tomato varieties under monoculture was 1.03-1.50 mg/kg, while that in the fruits of cherry tomato varieties was 0.67-0.71 mg/kg. After intercropping with S. alfredii, the fruit Cd concentrations of Hangza 501, Hangza 503, and Hangza 108 decreased by 16.42 %, 19.72 %, and 6.76 %, respectively, while those of the other varieties significantly increased, except for those of Hangza 8. In contrast, the shoot Cd concentration of cherry tomatoes was greater than that of large-fruit tomatoes under monoculture. Furthermore, a significant increase in the shoot Cd concentration was noted in the Hangza 501, Hangza 503 and Hangza 603 plants following intercropping. Additionally, intercropping with S. alfredii increased the concentration of soluble sugars in the fruits of Hangza 8, Hangza 501, Hangza 503 and Hangza 603 by 4.66 %, 17.91 %, 10.60 % and 17.88 %, respectively. Intercropping with tomatoes resulted in a decrease in both the biomass and Cd uptake of S. alfredii. Interestingly, the inhibitory effect on S. alfredii was less pronounced when intercropped with cherry tomatoes than when intercropped with large-fruit tomatoes. Among the intercropping treatments, S. alfredii exhibited the greatest total Cd accumulation (0.06 mg/plant) when intercropped with Hangza 503. In conclusion, the cherry tomato variety Hangza 503 was the most suitable for intercropping with S. alfredii and can be used safely for vegetable production and simultaneous phytoremediation of polluted soil. Our findings suggest that strategic selection of tomato varieties can optimize the effectiveness of "phytoextraction coupled with agro-safe production" technology for managing soil Cd concentrations.
Collapse
Affiliation(s)
- Luyao Ma
- Qingdao Key Laboratory of Ecological Protection and Restoration, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zulfiqar Ali Sahito
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chanjuan Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhesi Li
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Yu
- Livestock industrial development center of Shengzhou, Shengzhou 312400, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Weihua Guo
- Qingdao Key Laboratory of Ecological Protection and Restoration, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
11
|
Huang T, Imran. Biochar is an organomineral tool for mitigation of Cd toxicity in rice embedded soil and plant. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2301-2312. [PMID: 39126337 DOI: 10.1080/15226514.2024.2389463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Cadmium (Cd) contamination poses a significant threat to plants and human, as it can easily accumulate in plant tissues, leading to biochemical and physiological disorders. There is a growing interest in using biochar to mitigate the absorption of heavy metals by rice plants. This study tested peach biochar (PB) and its various levels of applications to evaluate the promising level for Cd remediation in contaminated soil. The application of PB3 had a significant impact on Cd mitigation, with extractable Cd (AB-DTPA) in soil decreasing from 66 mg kg-1 to 18 mg kg-1. Cd content in shoots decreased from 2.5 mg kg-1 to 0.9 mg kg-1, and in grains decreased from 1.1 mg kg-1 to 0.5 mg kg-1. Moreover, the PB treatment led to increased rice yield, from 4.9 to 10 g pot-1, and biological yield, from 4 to 20 g pot-1. The soil also showed improved organic matter content, increasing from 0.4% to 0.7%, and enhanced levels of nitrogen (N), phosphorus (P), and potassium (K), by increases from 2.1 g pot-1 to 5 g pot-1, 58 mg kg-1 to 83 mg kg-1, and 40 mg kg-1 to 63 mg kg-1, respectively. These findings demonstrate the potential of PB in mitigating Cd contamination in soil and reducing its uptake by rice plants.
Collapse
Affiliation(s)
- Tianzhi Huang
- Key Laboratory of Ecological Safety and Protection of Sichuan Province, Mianyang Normal University, Sichuan, China
| | - Imran
- College of Engineering, Agriculture aviation Innovation Lab, South China Agriculture University, Guangzhou, China
| |
Collapse
|
12
|
Piotrowska-Niczyporuk A, Bonda-Ostaszewska E, Bajguz A. Mitigating Effect of Trans-Zeatin on Cadmium Toxicity in Desmodesmus armatus. Cells 2024; 13:686. [PMID: 38667301 PMCID: PMC11049045 DOI: 10.3390/cells13080686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.
Collapse
Affiliation(s)
- Alicja Piotrowska-Niczyporuk
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Elżbieta Bonda-Ostaszewska
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| |
Collapse
|
13
|
Qin H, Wang Z, Sha W, Song S, Qin F, Zhang W. Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification. Microorganisms 2024; 12:700. [PMID: 38674644 PMCID: PMC11052264 DOI: 10.3390/microorganisms12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Heavy metals migrate easily and are difficult to degrade in the soil environment, which causes serious harm to the ecological environment and human health. Thus, soil heavy metal pollution has become one of the main environmental issues of global concern. Plant-growth-promoting rhizobacteria (PGPR) is a kind of microorganism that grows around the rhizosphere and can promote plant growth and increase crop yield. PGPR can change the bioavailability of heavy metals in the rhizosphere microenvironment, increase heavy metal uptake by phytoremediation plants, and enhance the phytoremediation efficiency of heavy-metal-contaminated soils. In recent years, the number of studies on the phytoremediation efficiency of heavy-metal-contaminated soil enhanced by PGPR has increased rapidly. This paper systematically reviews the mechanisms of PGPR that promote plant growth (including nitrogen fixation, phosphorus solubilization, potassium solubilization, iron solubilization, and plant hormone secretion) and the mechanisms of PGPR that enhance plant-heavy metal interactions (including chelation, the induction of systemic resistance, and the improvement of bioavailability). Future research on PGPR should address the challenges in heavy metal removal by PGPR-assisted phytoremediation.
Collapse
Affiliation(s)
| | | | | | | | - Fenju Qin
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|