1
|
Qian Y, Jia J, Chen Z, Wang K, Li P, Gao P, Ying Y, Shi W. Environmental drivers and transcriptomic variations shaping Lei bamboo shoots across cultivation regions. FRONTIERS IN PLANT SCIENCE 2025; 16:1565665. [PMID: 40235921 PMCID: PMC11997477 DOI: 10.3389/fpls.2025.1565665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
The nutritional composition of bamboo shoots varies significantly across regions, yet the precise environmental drivers and underlying molecular mechanisms remain poorly understood. In particular, the influence of soil properties and climatic factors on key metabolic pathways regulating bamboo shoot quality has not been systematically examined. In this study, we investigate the environmental determinants of nutrient accumulation in Lei bamboo (Phyllostachys violascens) shoots by integrating environmental analysis, nutritional profiling, and transcriptomics. We identified soil organic matter, total porosity, and longitude as the primary factors influencing bamboo shoot nutrition, with higher soil organic matter correlating with enhanced nutrient content. Transcriptome analysis revealed that environmental conditions regulate key metabolic pathways, including starch metabolism (e.g., BGLU, SPS) and flavonoid biosynthesis (e.g., PAL, 4CL), ultimately shaping bamboo shoot quality. Based on these findings, we developed a predictive model linking environmental factors, gene expression, and nutritional traits, providing a foundation for precision cultivation strategies. This study provides novel insights into plant-environment interactions governing bamboo shoot nutrition and offers actionable strategies for region-specific cultivation, aligning with consumer demand for healthier bamboo-based products.
Collapse
Affiliation(s)
- Yingzhai Qian
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Jingyi Jia
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Zhenlin Chen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Kecheng Wang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Peng Li
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Peijun Gao
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Bamboo Science and Technology of Ministry of Education, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, China
| | - Yeqing Ying
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Bamboo Science and Technology of Ministry of Education, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, China
| | - Wenhui Shi
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
- Key Laboratory of Bamboo Science and Technology of Ministry of Education, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
2
|
Guo J, Kneeshaw D, Peng C, Wu Y, Feng L, Qu X, Wang W, Pan C, Feng H. Positive effects of species mixing on biodiversity of understory plant communities and soil health in forest plantations. Proc Natl Acad Sci U S A 2025; 122:e2418090122. [PMID: 40080637 PMCID: PMC11929463 DOI: 10.1073/pnas.2418090122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025] Open
Abstract
Mixed-species plantations are increasingly recognized for their potential to maintain forest biodiversity and soil health; however, a comprehensive assessment of their global effectiveness is lacking. To fill this knowledge gap, we conducted a meta-analysis of 7,045 paired observations between mixed-species and monoculture plantations, derived from 311 studies across diverse forest ecosystems worldwide. Our results show that mixed-species plantations significantly increased understory plant biomass, cover, and species richness by 32.6%, 55.4%, and 32.2%, respectively, compared to monocultures. Furthermore, the Shannon and Pielou diversity indices increased by 28.2% and 8.6%, respectively, and the Simpson index increased by 9.6%. When understory shrub and herbaceous species were considered separately, species mixing had significantly positive effects on shrub diversity but had no effect on herbaceous diversity. Moreover, mixed-species plantations markedly improved soil physical and chemical properties compared to monocultures. These improvements include increases in soil nutrient content (9.6 to 17.8%) and nutrient availability (14.7 to 33.5%), soil microbial biomass (17.2 to 28.8%), and soil carbon sequestration (7.2 to 19.9%). These enhancements were particularly pronounced in plantations that included legumes. Our findings reveal that the benefits of species mixing are influenced by climatic conditions, geographic location, and stand age, with the most substantial effects observed in temperate regions and mature stands. This study underscores the critical role of mixed-species plantations in promoting sustainable forest management and mitigating the ecological limitations of monocultures.
Collapse
Affiliation(s)
- Jiahuan Guo
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou570228, Hainan, China
| | - Daniel Kneeshaw
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, QCH3C 3P8, Canada
| | - Changhui Peng
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, QCH3C 3P8, Canada
- College of Geographic Science, Hunan Normal University, Changsha410081, Hunan, China
| | - Yaoxing Wu
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing100102, China
| | - Lei Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, China
| | - Xinjing Qu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing210037, Jiangsu, China
| | - Weifeng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing210037, Jiangsu, China
| | - Chang Pan
- College of Life Sciences, Anqing Normal University, Anqing246011, Anhui, China
| | - Huili Feng
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou570228, Hainan, China
| |
Collapse
|
3
|
Fan L, Chen S, Guo Z, Hu R, Yao L. Soil pH enhancement and alterations in nutrient and Bacterial Community profiles following Pleioblastus amarus expansion in tea plantations. BMC PLANT BIOLOGY 2024; 24:837. [PMID: 39242495 PMCID: PMC11378374 DOI: 10.1186/s12870-024-05374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The expansion of bamboo forests increases environmental heterogeneity in tea plantation ecosystems, affecting soil properties and microbial communities. Understanding these impacts is essential for developing sustainable bamboo management and maintaining ecological balance in tea plantations. METHODS We studied the effect of the continuous expansion of Pleioblastus amarus into tea plantations, by establishing five plot types: pure P. amarus forest area (BF), P. amarus forest interface area (BA), mixed forest interface area (MA), mixed forest center area (TB), and pure tea plantation area (TF). We conducted a comprehensive analysis of soil chemical properties and utilized Illumina sequencing to profile microbial community composition and diversity, emphasizing their responses to bamboo expansion. RESULTS (1) Bamboo expansion significantly raised soil pH and enhanced levels of organic matter, nitrogen, and phosphorus, particularly noticeable in BA and MA sites. In the TB sites, improvements in soil nutrients were statistically indistinguishable from those in pure tea plantation areas. (2) Continuous bamboo expansion led to significant changes in soil bacterial diversity, especially noticeable between BA and TF sites, while fungal diversity was unaffected. (3) Bamboo expansion substantially altered the composition of less abundant bacterial and fungal communities, which proved more sensitive to changes in soil chemical properties. CONCLUSION The expansion of bamboo forests causes significant alterations in soil pH and nutrient characteristics, impacting the diversity and composition of soil bacteria in tea plantations. However, as expansion progresses, its long-term beneficial impact on soil quality in tea plantations appears limited.
Collapse
Affiliation(s)
- Lili Fan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Shuanglin Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Ziwu Guo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Ruicai Hu
- Longyou County Forestry Technology Extension Station, Quzhou, 324400, China
| | - Liangjin Yao
- Zhejiang Academy of Forestry, Hangzhou, 310023, China.
| |
Collapse
|
4
|
Xu JW, Zheng Z, Ji JH, Mao R. Non-additive effects on biodegradation of moso bamboo litter- and broadleaf tree litter-leached dissolved organic matter mixtures in a subtropical forest of southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170104. [PMID: 38232826 DOI: 10.1016/j.scitotenv.2024.170104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Phyllostachys pubescens (moso bamboo) has extensively expanded to subtropical broadleaf forests. However, how moso bamboo expansion influences litter-leached dissolved organic matter (DOM) biodegradation is unclear. In this study, we collected fresh leaf litter of moso bamboo and 10 broadleaf tree species from a subtropical forest in southern China and extracted litter-leached dissolved organic carbon (DOC), dissolved total nitrogen (DTN), and dissolved total phosphorus (DTP). Then, using a 42-day incubation experiment, we measured litter-leached DOM biodegradation of the selected 11 species and assessed the relative mixing effects on biodegradation of bamboo litter- and broadleaf tree litter-leached DOM mixtures with volume mixing ratios of 1:3, 1:1, and 3:1. In the litter leachates, bamboo had lower DOC:DTN ratio, DOC:DTP ratio, and DOM aromaticity (i.e., lower SUVA254 and SUVA350 values) than most broadleaf tree species. Litter-leached DOM biodegradation did not differ among bamboo, Liquidambar formosana, Vernicia fordii, and Cyclobalanopsis glauca, but was greater for bamboo than for the other seven broadleaf tree species. Leaf litter-leached DOM biodegradation correlated negatively with DOC:DTN and DOC:DTP ratios, but exhibited no significant relationship with DOM aromaticity. Regardless of volume mixing ratios, antagonistic effects were observed when bamboo litter-leached DOM was mixed with broadleaf tree litter-leached DOM with comparable biodegradation, whereas synergistic effects occurred when bamboo litter-leached DOM was mixed with broadleaf tree litter-leached DOM with lower biodegradation. The relative mixing effects on DOM biodegradation increased linearly with elevated interspecific difference in litter-leached DOM biodegradation between bamboo and broadleaf tree species across the incubation periods. These findings indicate that moso bamboo expansion will substantially alter litter-leached DOM biodegradation by improving substrate quality and changing species interactions, and the magnitudes of such changing trends are dependent on the native tree litter-leached DOM biodegradation in subtropical broadleaf forests.
Collapse
Affiliation(s)
- Jia-Wen Xu
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Academy of Forestry, Nanchang 330013, China
| | - Zhi Zheng
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing-Hao Ji
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rong Mao
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; Matoushan Observation and Research Station of Forest Ecosystem, Zixi 335300, China.
| |
Collapse
|
5
|
Zheng Y, Yu C, Xiao Y, Ye T, Wang S. The impact of utilizing oyster shell soil conditioner on the growth of tomato plants and the composition of inter-root soil bacterial communities in an acidic soil environment. Front Microbiol 2024; 14:1276656. [PMID: 38293555 PMCID: PMC10824944 DOI: 10.3389/fmicb.2023.1276656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction The objective of this study is to examine the impact of various oyster shell soil conditioners, which are primarily composed of oyster shells, on the growth of tomatoes in acidic soil. Moreover, the aim of this investigation is to analyze the variety and structure of soil bacterial populations in close proximity to tomato roots while also contributing to the understanding of the physical, chemical, and biological mechanisms of oyster shell soil conditioners. Methods Tomato plants were grown in acidic red soil in three groups: a control group and a treatment group that used two types of oyster shell soil conditioners, OS (oyster shell powder) and OSF (oyster shell powder with organic microbial fertilizer). A range of soil physicochemical properties were measured to study differences in inter-soil physicochemical parameters and the growth of tomato plantings. In addition, this study utilized the CTAB (Cetyltrimethylammonium Bromide) technique to extract DNA from the soil in order to investigate the effects of oyster shell soil conditioner on the composition and diversity of bacterial populations. Utilizing high-throughput sequencing technologies and diversity index analysis, the composition and diversity of bacterial populations in the soil adjacent to plant roots were then evaluated. Ultimately, correlation analysis was used in this study to explore the relationship between environmental factors and the relative abundance of soil bacteria in the inter-root zone of tomato plants. Results The findings indicated that the oyster shell soil conditioners were capable of modifying the physicochemical characteristics of the soil. This was evidenced by significant increases in soil total nitrogen (16.2 and 59.9%), soil total carbon (25.8 and 27.7%), pH (56.9 and 55.8%), and electrical conductivity (377.5 and 311.7%) in the OS and OSF groups, respectively, compared to the control group (p < 0.05). Additionally, data pertaining to tomato seed germination and seedling growth biomass demonstrated that both oyster shell soil conditioners facilitated the germination of tomato seeds and the growth of seedlings in an acidic red clay soil (p < 0.05). On the other hand, the application of two oyster shell soil conditioners resulted in a modest reduction in the diversity of inter-root soil bacteria in tomato plants. Specifically, the group treated with OSF exhibited the most substantial fall in the diversity index, which was 13.6% lower compared to the control group. The investigation carried out on the soil between tomato plant roots yielded findings about the identification of the ten most abundant phyla. These phyla together represented 91.00-97.64% of the overall abundance. In the inter-root soil of tomatoes, a study identified four major phyla, namely Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, which collectively accounted for up to 85% of the total abundance. At the general level, the relative abundance of Massilia increased by 2.18 and 7.93%, Brevundimonas by 5.43 and 3.01%, and Lysobacter by 3.12 and 7.49% in the OS and OSF groups, respectively, compared to the control group. However, the pathogenic bacteria unidentified_Burkholderiaceae decreased by 5.76 and 5.05%, respectively. The correlation analysis yielded conclusive evidence indicating that, which involved the use of CCA (Canonical Correlation Analysis) graphs and Spearman correlation coefficients, pH exhibited a positive correlation (p < 0.05) with Shewanella and a negative correlation (p < 0.05) with Bradyrhizobium. The relative abundance of Lysobacter and Massilia exhibited a positive correlation with the levels of total soil nitrogen. Discussion The utilization of oyster shell soil conditioner on acidic red soil resulted in several positive effects. Firstly, it raised the pH level of the inter-root soil of tomato plants, which is typically acidic. This pH adjustment facilitated the germination of tomato seeds and promoted the growth of seedlings. In addition, the application of oyster shell soil conditioner resulted in changes in the structure of the bacterial community in the inter-root soil, leading to an increase in the relative abundance of Proteobacteria and Bacteroidetes and a decrease in the relative abundance of Acidobacteria. Furthermore, this treatment fostered the proliferation of genera of beneficial bacteria like Massilia, Brevundimonas, and Lysobacter, ultimately enhancing the fertility of the red soil.
Collapse
Affiliation(s)
- Yi Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Chaofan Yu
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Yujun Xiao
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Tinge Ye
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| | - Songgang Wang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|