1
|
Liu Z, Li Y, Xu G, Yu Y. Effects of microplastics on black soil health: A global meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137850. [PMID: 40058208 DOI: 10.1016/j.jhazmat.2025.137850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) have garnered widespread attention as an emerging global contaminant. However, the impacts of MPs on black soil health remain unclear. A meta-analysis of 337 cases from 33 studies was conducted to elucidate the effects of MPs on black soil health. The analysis incorporated 35 indicators, including soil properties, soil enzymes, plant growth, soil animal health, and soil microbial diversity. We investigated the effects of MPs properties, such as particle type, size, concentration, and exposure duration, on soil health. Results showed that MPs led to notable increases in SOM, DOC, available nitrogen by 31.84 %, 14.35 %, and 12.45 %, respectively, while decreasing nitrate nitrogen by 12.89 %. In addition, MPs exposure enhanced soil urease activity by 11.24 % but reduced phosphatase activity by 6.62 %. MPs also diminished microbial alpha-diversity, caused oxidative damage in earthworms, and suppressed plant germination rates. Notably, smaller MPs, higher concentrations, longer exposure periods, and conventional MPs have more detrimental effects on soil health. By applying the entropy weight method combined with the analytical hierarchy process, we quantified the overall impact of MPs on black soil health as a 12.09 % decrease. Our findings underscore the risks of persistent MPs pollution to black soil health.
Collapse
Affiliation(s)
- Zhaojiang Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guanghui Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Institute of Biology, Free University of Berlin, Berlin 14195, Germany
| | - Yong Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
2
|
Yang Y, Liu L, Xiong H, Wang T, Yang J, Wang W, Al-Khalaf AA, Wang Z, Ahmed W. Biochar and Trehalose Co-Application: A Sustainable Strategy for Alleviating Lead Toxicity in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:878. [PMID: 40265793 PMCID: PMC11946277 DOI: 10.3390/plants14060878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 04/24/2025]
Abstract
Lead (Pb) is a common contaminant that causes serious health and environmental problems. Thus, appropriate environmentally friendly and efficient techniques must be developed to remediate Pb in soils. Biochar (BC) has shown promise as an effective strategy to mitigate Pb toxicity. Trehalose (Tre) is a promising sugar that has been shown to effectively improve plant tolerance to abiotic stresses. Nonetheless, its role in alleviating Pb toxicity is unknown. The study investigated the impacts of BC and Tre co-application in alleviating Pb toxicity in rice crops. The study included the following treatments: control, Pb stress (250 mg kg-1), Pb stress (250 mg kg-1) + BC (2.5%), Pb stress (250 mg kg-1) + Tre (30 mM), and Pb stress (250 mg kg-1) + BC (2.5%) + Tre (30 mM). Results showed that Pb toxicity reduced rice yield by decreasing chlorophyll synthesis and relative water content (RWC), by increasing malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, Pb accumulation in roots and shoots, soil available Pb concentration, and by decreasing the availability of soil nutrients. BC and Tre application mitigated the adverse impacts of Pb; however, more promising results were obtained with the co-application of BC and Tre. The results indicated that co-application of BC and Tre increased the rice yield by increasing photosynthetic pigments (46-96.42%), leaf water contents (16.67%), proline and soluble protein synthesis (35.13% and 24.96%), and antioxidant activities (12.07-31.67%), by decreasing root (59.72%), shoot (76.47%), and soil (57.14%) Pb concentrations, and the Pb translocation factor (15.08%). These findings suggested that co-application of BC and Tre can be a practical approach for reducing Pb toxicity, availability, and uptake, which improves rice productivity in Pb-polluted soil.
Collapse
Affiliation(s)
- Yingfen Yang
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China; (Y.Y.)
| | - Li Liu
- College of Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Haibo Xiong
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China; (Y.Y.)
| | - Tianju Wang
- College of Resources, Environment, and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
| | - Jun Yang
- College of Resources, Environment, and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
| | - Wenpeng Wang
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong 675000, China; (Y.Y.)
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Zhuhua Wang
- College of Resources, Environment, and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
| | - Waqar Ahmed
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Chen Q, Ou Z, Lv H. Cadmium toxicity in blueberry cultivation and the role of arbuscular mycorrhizal fungi. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117364. [PMID: 39577053 DOI: 10.1016/j.ecoenv.2024.117364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that interferes with essential metabolic pathways crucial for plant growth, often resulting in toxicity and plant death. Blueberry plants exhibit metabolic adaptations to mitigate the stress caused by elevated Cd levels. In this review, we highlighted the effects of Cd-induced stress on blueberry plants and explored the potential alleviating effects of arbuscular mycorrhizal fungi (AMF). Cd uptake disrupts plant metabolism and impacts primary and secondary metabolites, including anthocyanins, which play a role in defense mechanisms against pathogens. Hence, Cd-induced stress alters anthocyanin levels in blueberry leaves, negatively affecting antioxidant defense mechanisms and hindering growth. Conversely, AMF establishes a symbiotic relationship with blueberry plants, promoting nutrient absorption and enhancing stress tolerance. Understanding the association between Cd stress, anthocyanin responses in blueberries, and AMF-mediated mitigation is crucial for developing integrated strategies to enhance blueberry plant health and improve quality. Employing AMF to remediate metal-related stress represents a significant breakthrough for sustainable crop production in a Cd-contaminated environment.
Collapse
Affiliation(s)
- Qianying Chen
- College of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230001, China.
| | - Zulan Ou
- College of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230001, China.
| | - Huifang Lv
- College of Biological and Food Engineering, Hefei Normal University, Hefei, Anhui 230001, China.
| |
Collapse
|
4
|
Chen L, Qiu T, Huang F, Zeng Y, Cui Y, Chen J, White JC, Fang L. Micro/nanoplastics pollution poses a potential threat to soil health. GLOBAL CHANGE BIOLOGY 2024; 30:e17470. [PMID: 39149882 DOI: 10.1111/gcb.17470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/29/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Micro/nanoplastic (MNP) pollution in soil ecosystems has become a growing environmental concern globally. However, the comprehensive impacts of MNPs on soil health have not yet been explored. We conducted a hierarchical meta-analysis of over 5000 observations from 228 articles to assess the broad impacts of MNPs on soil health parameters (represented by 20 indicators relevant to crop growth, animal health, greenhouse gas emissions, microbial diversity, and pollutant transfer) and whether the impacts depended on MNP properties. We found that MNP exposure significantly inhibited crop biomass and germination, and reduced earthworm growth and survival rate. Under MNP exposure, the emissions of soil greenhouse gases (CO2, N2O, and CH4) were significantly increased. MNP exposure caused a decrease in soil bacteria diversity. Importantly, the magnitude of impact of the soil-based parameters was dependent on MNP dose and size; however, there is no significant difference in MNP type (biodegradable and conventional MNPs). Moreover, MNPs significantly reduced As uptake by plants, but promoted plant Cd accumulation. Using an analytical hierarchy process, we quantified the negative impacts of MNP exposure on soil health as a mean value of -10.2% (-17.5% to -2.57%). Overall, this analysis provides new insights for assessing potential risks of MNP pollution to soil ecosystem functions.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
5
|
Luo Y, Wang Z, Zhang YD, Zhang JQ, Zeng QP, Zhang ZL, Tian D, Li C, Peng CL, Ye K, Chen YM, Huang FY, Wang YP, Ma XY, Chen L. Vertical migration behavior simulation and prediction of Pb and Cd in co-contaminated soil around Pb-Zn smelting slag site. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133990. [PMID: 38460261 DOI: 10.1016/j.jhazmat.2024.133990] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Heavy metal migration in soil poses a serious threat to the soil and groundwater. Understanding the migration pattern of heavy metals (HMs) under different factors could provide a more reasonable position for pollution evaluation and targetoriented treatment of soil heavy metal. In this study, the migration behavior of Pb and Cd in co-contaminated soil under different pH and ionic strength (NaCl concentration) was simulated using convective dispersion equation (CDE). We predicted the migration trends of Pb and Cd in soils after 5, 10, and 20 years via PHREEQC. The results showed that the migration time of Cd in the soil column experiment was about 60 days faster than that of Pb, and the migration trend was much steeper. The CDE was proved to describe the migration behavior of Pb and Cd (R2 > 0.75) in soil. The predicted results showed that Cd migrated to 15-20 cm of soil within 7 years and Pb stayed mainly in the top 0-6 cm of soil within 5 years as the duration of irrigation increased. Overall, our study is expected to provide new insight into the migration of heavy metal in soil ecosystems and guidance for reducing risk of heavy metal in the environment.
Collapse
Affiliation(s)
- Ying Luo
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China.
| | - Yong-De Zhang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China.
| | - Jia-Qian Zhang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Qiu-Ping Zeng
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Zhen-Long Zhang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Duan Tian
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Chao Li
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Chao-Liang Peng
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Kai Ye
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Yi-Ming Chen
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Feng-Yu Huang
- School of Environment and Resources, Xichang University, Xichang, Sichuan 615000, China
| | - Yu-Ping Wang
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan 644000, China
| | - Xiao-Ya Ma
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, Sichuan 621010, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Chen L, Chang N, Qiu T, Wang N, Cui Q, Zhao S, Huang F, Chen H, Zeng Y, Dong F, Fang L. Meta-analysis of impacts of microplastics on plant heavy metal(loid) accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123787. [PMID: 38548159 DOI: 10.1016/j.envpol.2024.123787] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
The co-occurrence of microplastics (MPs) and heavy metal(loid)s (HMs) has attracted growing scientific interest because of their wide distribution and environmental toxicity. Nevertheless, the interactions between MPs and HMs in soil-plant systems remain unclear. We conducted a meta-analysis with 3226 observations from 87 independent studies to quantify the impact of MPs addition on the plant biomass and HMS accumulation. Co-occurrence of MPs and HMs (except for As) induced synergistic toxicity to plant growth. MPs promoted their uptake in the shoot by 11.0% for Cd, 30.0% for Pb, and 47.1% for Cu, respectively. In contrast, MPs caused a significant decrease (22.6%, 17.9-26.9%) in the shoot As accumulation. The type and dose of MPs were correlated with the accumulation of HMs. MPs increased available concentrations of Cd, Pb, and Cu, but decreased available As concentration in soils. Meanwhile, MPs addition significantly lowered soil pH. These findings may provide explanations for MPs-mediated effects on influencing the accumulation of HMs in plants. Using a machine learning approach, we revealed that soil pH and total HMs concentration are the major contributors affecting their accumulation in shoot. Overall, our study indicated that MPs may increase the environmental risks of HMs in agroecosystems, especially metal cations.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Na Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Qingliang Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Shuling Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua, 321000, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Huang F, Li Z, Yang X, Liu H, Chen L, Chang N, He H, Zeng Y, Qiu T, Fang L. Silicon reduces toxicity and accumulation of arsenic and cadmium in cereal crops: A meta-analysis, mechanism, and perspective study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170663. [PMID: 38311087 DOI: 10.1016/j.scitotenv.2024.170663] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Arsenic (As) and cadmium (Cd) are two toxic metal(loid)s that pose significant risks to food security and human health. Silicon (Si) has attracted substantial attention because of its positive effects on alleviating the toxicity and accumulation of As and Cd in crops. However, our current knowledge of the comprehensive effects and detailed mechanisms of Si amendment is limited. In this study, a global meta-analysis of 248 original articles with over 7000 paired observations was conducted to evaluate Si-mediated effects on growth and As and Cd accumulation in rice (Oryza sativa L.), wheat (Triticum aestivum L.), and maize (Zea mays L.). Si application increases the biomass of these crops under As and/or Cd contamination. Si amendment also decreased shoot As and Cd accumulation by 24.1 % (20.6 to 27.5 %) and 31.9 % (29.0 to 31.9 %), respectively. Furthermore, the Si amendment reduced the human health risks posed by As (2.6 %) and Cd (12.9 %) in crop grains. Si-induced inhibition of Cd accumulation is associated with decreased Cd bioavailability and the downregulation of gene expression. The regulation of gene expression by Si addition was the driving factor limiting shoot As accumulation. Overall, our analysis demonstrated that Si amendment has great potential to reduce the toxicity and accumulation of As and/or Cd in crops, providing a scientific basis for promoting food safety globally.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zimin Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Liu B, Zhao S, Qiu T, Cui Q, Yang Y, Li L, Chen J, Huang M, Zhan A, Fang L. Interaction of microplastics with heavy metals in soil: Mechanisms, influencing factors and biological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170281. [PMID: 38272091 DOI: 10.1016/j.scitotenv.2024.170281] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Microplastics (MPs) and heavy metals (HMs) in soil contamination are considered an emerging global problem that poses environmental and health risks. However, their interaction and potential biological effects remain unclear. Here, we reviewed the interaction of MPs with HMs in soil, including its mechanisms, influencing factors and biological effects. Specifically, the interactions between HMs and MPs mainly involve sorption and desorption. The type, aging, concentration, size of MPs, and the physicochemical properties of HMs and soil have significant impacts on the interaction. In particular, MP aging affects specific surface areas and functional groups. Due to the small size and resistance to decomposition characteristics of MPs, they are easily transported through the food chain and exhibit combined biological effects with HMs on soil organisms, thus accumulating in the human body. To comprehensively understand the effect of MPs and HMs in soil, we propose combining traditional experiments with emerging technologies and encouraging more coordinated efforts.
Collapse
Affiliation(s)
- Baiyan Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
| | - Ai Zhan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, China.
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
9
|
Yang L, Kang Y, Li N, Wang Y, Mou H, Sun H, Ao T, Chen L, Chen W. Unlocking hormesis and toxic effects induced by cadmium in Polygonatum cyrtonema Hua based on morphology, physiology and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133447. [PMID: 38219579 DOI: 10.1016/j.jhazmat.2024.133447] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Traditional Chinese medicine materials (TCMMs) are widely planted and used, while cadmium (Cd) is a widespread pollutant that poses a potential risk to plant growth and human health. However, studies on the influences of Cd on TCMMs have been limited. Our study aims to reveal the antioxidation-related detoxification mechanism of Polygonatum cyrtonema Hua under Cd stress based on physiology and metabolomics. The results showed that Cd0.5 (total Cd: 0.91 mg/kg; effective Cd: 0.45 mg/kg) induced hormesis on the biomass of roots, tubers and aboveground parts with increases of 22.88%, 27.12% and 17.02%, respectively, and significantly increased the flavonoids content by 57.45%. Additionally, the metabolism of caffeine, glutamine, arginine and purine was upregulated to induce hormesis in Cd0.5, which enhanced the synthesis of resistant substances such as spermidine, choline, IAA and saponins. Under Cd2 stress, choline and IAA decreased, and fatty acid metabolites (such as peanut acid and linoleic acid) and 8-hydroxyguanosine increased in response to oxidative damage, resulting in a significant biomass decrease. Our findings further reveal the metabolic process of detoxification by antioxidants and excessive Cd damage in TCMMs, deepen the understanding of detoxification mechanisms related to antioxidation, and enrich the relevant theories of hormesis induced by Cd.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuchen Kang
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Na Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yuhao Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haiyan Mou
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China
| | - Hui Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Wenqing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610207, China; College of Architecture and Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|