1
|
Kong X, Wang X, Xia Q, Hu Q, Yu W, Huang Q, Li J, Wang C, Lin Z, Liu Y, Qi Y, Tan X, Zheng B, Yu J. Unveiling the nexus between environmental exposures and testicular damages: revelations from autophagy and oxidative stress imbalance. Cell Death Discov 2025; 11:258. [PMID: 40442097 PMCID: PMC12122914 DOI: 10.1038/s41420-025-02543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 05/07/2025] [Accepted: 05/22/2025] [Indexed: 06/02/2025] Open
Abstract
Recent evidence consolidates the deleterious impact of environmental exposure on testicular damage. Environmental exposures can instigate testicular toxicity, causing damage to the Sertoli-Sertoli cell-mediated blood-testis barrier (BTB) integrity, alterations in hormone levels orchestrated by aberrant Leydig cells, and disruption of spermatogenesis. Despite diverse study designs and methodologies, a consensus is emerging on how environmental factors induce oxidative stress by elevating ROS levels, affecting autophagy through pathways such as the ROS-mediated mTOR signaling pathway, ultimately culminating in testicular damage. This review synthesizes existing literature on how environmental exposures, including metals, air pollutants, industrial contaminants, and pesticides, disturb testicular homeostasis via autophagy-mediated oxidative stress, highlighting recent significant advancements. It also explores interventions like antioxidant support and autophagy regulation to alleviate testicular damage. These findings underscore the importance of elucidating the mechanisms of autophagy influenced by environmental exposures in disrupting the equilibrium of oxidative stress, identifying potential drug targets, and establishing a groundwork for enhancing future treatments and clinical management of testicular injuries.
Collapse
Affiliation(s)
- Xiuwen Kong
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
- Reproductive medicine Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China
| | - Xinda Wang
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Qiushi Xia
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Qingqing Hu
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Wenqian Yu
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Chenyu Wang
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Ziwen Lin
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yiheng Liu
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yujuan Qi
- Clinical Center of Reproductive Medicine, Xuzhou Central Hospital, Southeast University Affiliated Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221000, China.
| | - Xiaofang Tan
- Reproductive medicine Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, 226001, China.
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| | - Jun Yu
- Institute of Reproductive Medicine, Jiangsu Province Key Laboratory in University for Inflammation and Molecular Drug Target, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Carberry CK, Hartwell H, Rider CV, Wheeler M, Auerbach S, Rager JE. Extracellular Vesicle (EV) Mechanisms of Toxicity for Per and Polyfluoroalkyl Substances: Comparing Transcriptomic Points of Departure Across Global Versus EV Regulatory Gene Sets. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025; 66:99-121. [PMID: 40105262 PMCID: PMC11991898 DOI: 10.1002/em.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/31/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
Extracellular vesicles (EVs) are emitted from cells throughout the body and serve as signaling molecules that mediate disease development. Emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) impact EV release and content, influencing liver toxicity. Still, the upstream regulators of EV changes affected by PFAS exposure remain unclear. This study evaluated the hypothesis that PFAS exposures, individually and in a mixture, alter the expression of genes involved in EV regulation at concentrations comparable to genes involved in global biological response mechanisms. HepG2 liver cells were treated at multiple concentrations with individual PFOS, PFOA, or PFHxA, in addition to an equimolar PFAS mixture. Gene expression data were analyzed using three pipelines for concentration-response modeling, with results compared against empirically derived datasets. Final benchmark concentration (BMC) modeling was conducted via Laplace model averaging in BMDExpress (v3). BMCs were derived at an individual gene level and across different gene sets, including Gene Ontology (GO) annotations as well as a custom EV regulation gene set. To determine relative PFAS contributions to the evaluated mixture, relative potency factors were calculated across resulting BMCs using PFOS as a standard reference chemical. Results demonstrated that PFAS exposures altered the expression of genes involved in EV regulation, particularly for genes overlapping with endoplasmic reticulum stress. EV regulatory gene changes occurred at similar BMCs as global gene set alterations, supporting concurrent regulation and the role of EVs in PFAS toxicology. This application of transcriptomics-based BMC modeling further validates its utility in capturing both established and novel pathways of toxicity.
Collapse
Affiliation(s)
- Celeste K. Carberry
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hadley Hartwell
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cynthia V. Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Matthew Wheeler
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, RTP, NC, USA
| | - Scott Auerbach
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Julia E. Rager
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Tian M, Cao H, Gao H, Zhu L, Wu Y, Li G. Rotenone-induced cell apoptosis via endoplasmic reticulum stress and PERK-eIF2α-CHOP signalling pathways in TM3 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116972. [PMID: 39232300 DOI: 10.1016/j.ecoenv.2024.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Rotenone (ROT), a widely used natural pesticide, has an uncertain effect on reproductive toxicity. In this study, we used 20 mice distributed randomly into four groups, with each group receiving ROT doses of 0, 2, 4, and 8 mg/kg/day for 28 days. The results demonstrated that ROT induced significant testicular damage, including impaired spermatogenesis, inhibition of testosterone synthesis, and apoptosis of Leydig cells. Additionally, ROT disrupted the normal ultrastructure of the endoplasmic reticulum (ER) in testicular tissue, leading to ER stress in Leydig cells. To further explore whether ROT-induced apoptosis in Leydig cells is related to ER stress, the mouse Leydig cell line (TM3 cells) was treated with ROT at 0, 250, 500, and 1000 nM. ROT inhibited TM3 cell viability, induced cytotoxicity, and reduced testosterone content in the culture supernatants. Furthermore, ROT treatment triggered apoptosis in TM3 cells by activating ER stress and the PERK-eIF2α-CHOP signalling pathway. Pre-treatment of TM3 cells exposed to ROT with the ER stress inhibitor 4-phenylbutyric acid (4-PBA) alleviated these effects, decreasing apoptosis and preserving testosterone levels. Further intervention with the PERK inhibitor GSK2606414 reduced ROT-induced apoptosis and testosterone reduction by inhibiting PERK activity. In summary, ROT-induced male reproductive toxicity is specifically driven by apoptosis, with the PERK-eIF2α-CHOP signalling pathway activated by ER stress playing a crucial role in the apoptosis of Leydig cells triggered by ROT.
Collapse
Affiliation(s)
- Mi Tian
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hongting Cao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Haoxuan Gao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lingqin Zhu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yang Wu
- Department of Ultrasound Medicine, Ningxia Women and Children's Hospital, Peking University First Hospital, Yinchuan, Ningxia 750004, China.
| | - Guanghua Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
4
|
Wang Y, Yin D, Sun X, Zhang W, Ma H, Huang J, Yang C, Wang J, Geng Q. Perfluoroalkyl sulfonate induces cardiomyocyte apoptosis via endoplasmic reticulum stress activation and autophagy flux inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172582. [PMID: 38649052 DOI: 10.1016/j.scitotenv.2024.172582] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Perfluoroalkyl sulfonate (PFOS) is a commonly used chemical compound that often found in materials such as waterproofing agents, food packaging, and fire retardants. Known for its stability and persistence in the environment, PFOS can enter the human body through various pathways, including water and the food chain, raising concerns about its potential harm to human health. Previous studies have suggested a cardiac toxicity of PFOS, but the specific cellular mechanisms remained unclear. Here, by using AC16 cardiomyocyte as a model to investigate the molecular mechanisms potential the cardiac toxicity of PFOS. Our findings revealed that PFOS exposure reduced cell viability and induces apoptosis in human cardiomyocyte. Proteomic analysis and molecular biological techniques showed that the Endoplasmic Reticulum (ER) stress-related pathways were activated, while the cellular autophagy flux was inhibited in PFOS-exposed cells. Subsequently, we employed strategies such as autophagy activation and ER stress inhibition to alleviate the PFOS-induced apoptosis in AC16 cells. These results collectively suggest that PFOS-induced ER stress activation and autophagy flux inhibition contribute to cardiomyocyte apoptosis, providing new insights into the mechanisms of PFOS-induced cardiomyocyte toxicity.
Collapse
Affiliation(s)
- Yuanhao Wang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Da Yin
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Wei Zhang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Huan Ma
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106 Zhongshan Er Road, Guangzhou, Guangdong, China
| | - Jingnan Huang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Jigang Wang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory for Quality Esurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qingshan Geng
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| |
Collapse
|