1
|
Chen H, Liu B, Xu P, Wang H, Guo X, Liu G, Yuan J. Mechanistic role of environmental toxicants in inducing cellular ferroptosis and its associated diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118269. [PMID: 40344778 DOI: 10.1016/j.ecoenv.2025.118269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/04/2025] [Accepted: 05/01/2025] [Indexed: 05/11/2025]
Abstract
Due to exposure factors such as industrial exhaust, sewage discharge, pesticide runoff, automobile exhaust, and fuel combustion, environmental toxicants are widely present in daily life. Organisms are exposed to these environmental toxicants through contaminated air, food, and drinking water, and these environmental toxicants enter the human body and cause cytotoxicity and diseases through various pathways. As a new cell death mode that is different from cell necrosis, apoptosis, and autophagy, ferroptosis are mainly dysregulation of intracellular iron metabolism, lipid metabolism disorders, and the dysregulation of the antioxidant defense system, leading to lipid peroxidation and ultimately to the rupture of the cell membrane, damage, and cell death. Studies have shown that environmental toxicants induce a series of diseases, such as digestive diseases, urinary diseases, respiratory diseases, neurological disorders, and reproductive diseases, through the above mechanisms. We elaborate the mechanism of common environmental toxicants in inducing ferroptosis and the related systemic diseases mediated through the ferroptosis to provide the theoretical basis for preventing and treating environmental toxicant-related diseases. Nonetheless, our understanding of ferroptosis remains incomplete. For example, mechanisms and methods for the selective control of ferroptosis remain elusive, elucidating these mechanisms and strategies may be critical for leveraging knowledge of ferroptosis to treat related diseases.
Collapse
Affiliation(s)
- Hong Chen
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Bingchun Liu
- Stem Cell Laboratory; Central Laboratory of Organ Transplantation;Inner Mongolia Autonomous Region Engineering Laboratory for Genetic Test and Research of Tumor Cells, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Peixin Xu
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Huizeng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Xin Guo
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Gang Liu
- Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China
| | - Jianlong Yuan
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1 Tongdao North Street, Hohhot, Inner Mongolia 010050, China.
| |
Collapse
|
2
|
Asgari R, Rashidi S, Soleymani B, Bakhtiari M, Mohammadi P, Yarani R, Mansouri K. The supportive role of stem cells-derived exosomes in the embryo implantation process by regulating oxidative stress. Biomed Pharmacother 2025; 188:118171. [PMID: 40412359 DOI: 10.1016/j.biopha.2025.118171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/28/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025] Open
Abstract
Oxidative stress can affect many aspects of the reproduction process. The embryo implantation process is also one of the critical steps in establishing a successful pregnancy, and several factors, including oxidative stress, can impact the process. Oxidative stress is a state of imbalance between pro-oxidant molecules such as reactive oxygen species (ROS) and antioxidant defenses. Excessive levels of ROS cause damage to the cellular macromolecules such as nucleic acids, proteins, and lipids, resulting in cell dysfunction and pathological conditions. Recently, studies have displayed the therapeutic and antioxidant properties of exosomes derived from stem cells. Exosomes are one type of extracellular vesicles (EVs) secreted by almost all cells and contain different biomolecules. The unique properties of exosomes, like regulation of biological processes, transportation of biomolecules, stability, and biodegradability, can make exosomes a promising therapeutic option in reproductive disorders and diseases. Exosomes also can significantly improve the curative effect of oxidative stress-related pathogenesis. Accordingly, this review aims to provide a novel overview of how exosomes derived from stem cells can regulate oxidative stress and support the process of embryo implantation, hoping to pave the way to clinical applications and future research in this field.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sahar Rashidi
- Department of Obstetrics and Gynecology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bijan Soleymani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Kamran Mansouri
- Regenerative Medicine Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Basyoni AE, Atta A, Salem MM, Mohamed TM. Harnessing exosomes for targeted drug delivery systems to combat brain cancer. Cancer Cell Int 2025; 25:150. [PMID: 40234973 PMCID: PMC12001718 DOI: 10.1186/s12935-025-03731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
Brain cancer remains a significant challenge in the field of oncology, primarily because of its aggressive nature and the limited treatment options available. Conventional therapies often fall short in effectively targeting tumor cells, while sparing healthy brain tissue from collateral damage. However, exosomes are now recognized as promising nanocarriers for targeted drug delivery. These naturally occurring extracellular vesicles can cross the blood-brain barrier and selectively interact with cancer cells. Utilizing exosomes as drug delivery vehicles offers a novel approach with significant potential for targeted therapy. By encapsulating therapeutic agents within exosomes, drugs can be specifically targeted to tumor cells, maximizing their impact whilst minimizing damage to healthy brain tissue. Furthermore, exosomes can be modified to display molecules that specifically recognize and bind to cancer cells, further enhancing their precision and efficacy. While exosome-based therapies show potential, scalability, purification, and clinical application challenges remain. The scalability of exosome production, purification, and modification techniques remains a hurdle that must be overcome for clinical translation. Additionally, the intricate interactions between the tumor microenvironment and exosomes necessitate further research to optimize therapeutic outcomes. The review explores applications and future perspectives of exosome-based therapies in advancing targeted brain cancer treatment.
Collapse
Affiliation(s)
- Abdullah E Basyoni
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Amira Atta
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Mivehchi H, Eskandari-Yaghbastlo A, Emrahoglu S, Saeidpour Masouleh S, Faghihinia F, Ayoubi S, Nabi Afjadi M. Tiny messengers, big Impact: Exosomes driving EMT in oral cancer. Pathol Res Pract 2025; 268:155873. [PMID: 40022766 DOI: 10.1016/j.prp.2025.155873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Exosomes are indispensable extracellular vesicles that facilitate intercellular communication and are crucial for both healthy and pathological conditions, including cancer. The capacity of exosomes to echo the molecular characteristics of their cells of origin, including malignant cells, makes them indispensable tools for diagnosing and tracking disease progression in the field of oncology. Oral squamous cell carcinoma (OSCC), which has been identified as the sixth most prevalent cancer worldwide, has been linked to numerous risk factors, including tobacco use, alcohol consumption, human papillomavirus (HPV) infection, and inadequate oral hygiene. Exosomes pointedly influence the advancement of oral cancer via promoting tumor cell growth, invasion, angiogenesis, and immune evasion through the alteration of the tumor microenvironment. A critical apparatus in cancer metastasis is the epithelial-to-mesenchymal transition (EMT), during which cancer cells acquire improved migratory and invasive properties. EMT plays a role in metastasis, resistance to treatment, and evasion of the immune response. Exosomes facilitate EMT in oral cancer by delivering bioactive molecules that influence EMT signaling pathways. These exosomes inspire EMT in recipient cells, by this means enhancing tumor invasion and metastasis. This study aims to identify the specific exosomal components and signaling pathways that are tangled in EMT, in that way providing new avenues for targeted therapies designed to hinder the metastasis of oral cancer.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | - Sahand Emrahoglu
- School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saminalsadat Ayoubi
- School of Dental Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Singh M, Tiwari PK, Kashyap V, Kumar S. Proteomics of Extracellular Vesicles: Recent Updates, Challenges and Limitations. Proteomes 2025; 13:12. [PMID: 40137841 PMCID: PMC11944546 DOI: 10.3390/proteomes13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles secreted by cells, including exosomes, microvesicles, and apoptotic bodies. Proteomic analyses of EVs, particularly in relation to cancer, reveal specific biomarkers crucial for diagnosis and therapy. However, isolation techniques such as ultracentrifugation, size-exclusion chromatography, and ultrafiltration face challenges regarding purity, contamination, and yield. Contamination from other proteins complicates downstream processing, leading to difficulties in identifying biomarkers and interpreting results. Future research will focus on refining EV characterization for diagnostic and therapeutic applications, improving proteomics tools for greater accuracy, and exploring the use of EVs in drug delivery and regenerative medicine. In this review, we provide a bird's eye view of various challenges, starting with EV isolation methods, yield, purity, and limitations in the proteome analysis of EVs for identifying protein targets.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
| | - Prashant Kumar Tiwari
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
| | - Vivek Kashyap
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjay Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida UP-201310, India
- Division of Nephrology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Li Y, Yang Y, Wang X. Identification, annotation and toxicity estimation of organic pollutants in human serum via non-target analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125577. [PMID: 39719210 DOI: 10.1016/j.envpol.2024.125577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Environmental organic pollution causes a threat to the ecological environment, constrains social development and can also potentially harm human health. We applied non-target analysis to screen organic pollutants from the serum of 89 individuals, identifying 67 pollutants in the categories of industrial intermediates, plasticizers, surfactants, pharmaceuticals, pesticides, and exogenous pollutant metabolites. The detection rate of chemicals for industrial use (50.3%; 95% CI: 39.7, 60.8) was higher, reflecting the environmental exposure characteristics of the surrounding functional areas. In addition, 1168 potential pollutant features were annotated to 10 superclasses. Exposure levels of identified pollutants were semi-quantified by predicting response factors via machine learning model. Highly exposed pollutants involved various categories, especially pharmaceuticals due to their property of being easily absorbed by human body cross biological barriers. Toxicity of developmental toxicity, bioconcentration, mutagenicity and oral rat median lethal dose (LD50) were predicted with the occurrence rates of 62.7%, 10.4%, 11.9% and 11.9% of the identified pollutants respectively. 4-[3-(Trifluoromethyl)benzyl]piperidine (industrial intermediate), risperidone (pharmaceutical), and aminocarb (insecticide) were predicted to have multiple toxic effects, which deserved attention and further hazard assessment. This study provides a comprehensive pattern of human exposure to organic pollutants, contributing to evaluate the health risks caused by pollutants to the population, thus providing data support for the monitoring and management of pollutants.
Collapse
Affiliation(s)
- Yuqian Li
- School of Environment and Geography, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yajing Yang
- Qingdao Municipal Hospital, Qingdao, 266011, People's Republic of China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
7
|
Salahshoori I, Yazdanbakhsh A, Namayandeh Jorabchi M, Kazemabadi FZ, Khonakdar HA, Mohammadi AH. Recent advances and applications of stimuli-responsive nanomaterials for water treatment: A comprehensive review. Adv Colloid Interface Sci 2024; 333:103304. [PMID: 39357211 DOI: 10.1016/j.cis.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The development of stimuli-responsive nanomaterials holds immense promise for enhancing the efficiency and effectiveness of water treatment processes. These smart materials exhibit a remarkable ability to respond to specific external stimuli, such as light, pH, or magnetic fields, and trigger the controlled release of encapsulated pollutants. By precisely regulating the release kinetics, these nanomaterials can effectively target and eliminate contaminants without compromising the integrity of the water system. This review article provides a comprehensive overview of the advancements in light-activated and pH-sensitive nanomaterials for controlled pollutant release in water treatment. It delves into the fundamental principles underlying these materials' stimuli-responsive behaviour, exploring the design strategies and applications in various water treatment scenarios. In particular, the article indicates how integrating stimuli-responsive nanomaterials into existing water treatment technologies can significantly enhance their performance, leading to more sustainable and cost-effective solutions. The synergy between these advanced materials and traditional treatment methods could pave the way for innovative approaches to water purification, offering enhanced selectivity and efficiency. Furthermore, the review highlights the critical challenges and future directions in this rapidly evolving field, emphasizing the need for further research and development to fully realize the potential of these materials in addressing the pressing challenges of water purification.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Fatemeh Zare Kazemabadi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Amir H Mohammadi
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| |
Collapse
|
8
|
Ma Y, Sun X, Yao X. The role and mechanism of VDAC1 in type 2 diabetes: An underestimated target of environmental pollutants. Mitochondrion 2024; 78:101929. [PMID: 38986923 DOI: 10.1016/j.mito.2024.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/08/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease that accounts for more than 90% of diabetic patients. Its main feature is hyperglycemia due to insulin resistance or insulin deficiency. With changes in diet and lifestyle habits, the incidence of T2D in adolescents has burst in recent decades. The deterioration in the exposure to the environmental pollutants further aggravates the prevalence of T2D, and consequently, it imposes a significant economic burden. Therefore, early prevention and symptomatic treatment are essential to prevent diabetic complications. Mitochondrial number and electron transport chain activity are decreased in the patients with T2D. Voltage-Dependent Anion Channel 1 (VDAC1), as a crucial channel protein on the outer membrane of mitochondria, regulates signal transduction between mitochondria and other cellular components, participating in various biological processes. When VDAC1 exists in oligomeric form, it additionally facilitates the entry and exit of macromolecules into and from mitochondria, modulating insulin secretion. We summarize and highlight the interplay between VDAC1 and T2D, especially in the environmental pollutants-related T2D, shed light on the potential therapeutic implications of targeting VDAC1 monomers and oligomers, providing a new possible target for the treatment of T2D.
Collapse
Affiliation(s)
- Yu Ma
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiance Sun
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China
| | - Xiaofeng Yao
- Environmental and Occupational Health Department, Dalian Medical University, 9 West Lushun South Road, Dalian, China.
| |
Collapse
|
9
|
Jin H, Liu J, Wang D. Antioxidant Potential of Exosomes in Animal Nutrition. Antioxidants (Basel) 2024; 13:964. [PMID: 39199210 PMCID: PMC11351667 DOI: 10.3390/antiox13080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
This review delves into the advantages of exosomes as novel antioxidants in animal nutrition and their potential for regulating oxidative stress. Although traditional nutritional approaches promote oxidative stress defense systems in mammalian animals, several issues remain to be solved, such as low bioavailability, targeted tissue efficiency, and high-dose by-effect. As an important candidate offering regulation opportunities concerned with cellular communication, disease prevention, and physiology regulation in multiple biological systems, the potential of exosomes in mediating redox status in biological systems has not been well described. A previously reported relationship between redox system regulation and circulating exosomes suggested exosomes as a fundamental candidate for both a regulator and biomarker for a redox system. Herein, we review the effects of oxidative stress on exosomes in animals and the potential application of exosomes as antioxidants in animal nutrition. Then, we highlight the advantages of exosomes as redox regulators due to their higher bioavailability and physiological heterogeneity-targeted properties, providing a theoretical foundation and feed industry application. Therefore, exosomes have shown great potential as novel antioxidants in the field of animal nutrition. They can overcome the limitations of traditional antioxidants in terms of dosage and side effects, which will provide unprecedented opportunities in nutritional management and disease prevention, and may become a major breakthrough in the field of animal nutrition.
Collapse
Affiliation(s)
| | | | - Diming Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.L.)
| |
Collapse
|
10
|
Salahshoori I, Namayandeh Jorabchi M, Mazaheri A, Mirnezami SMS, Afshar M, Golriz M, Nobre MAL. Tackling antibiotic contaminations in wastewater with novel Modified-MOF nanostructures: A study of molecular simulations and DFT calculations. ENVIRONMENTAL RESEARCH 2024; 252:118856. [PMID: 38599447 DOI: 10.1016/j.envres.2024.118856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
The contamination of wastewater with antibiotics has emerged as a critical global challenge, with profound implications for environmental integrity and human well-being. Adsorption techniques have been meticulously investigated and developed to mitigate and alleviate their effects. In this study, we have investigated the adsorption behaviour of Erythromycin (ERY), Gentamicin (GEN), Levofloxacin (LEVO), and Metronidazole (MET) antibiotics as pharmaceutical contaminants (PHCs) on amide-functionalized (RC (=O)NH2)/MIL-53 (Al) (AMD/ML53A), using molecular simulations and density functional theory (DFT) calculations. Based on our DFT calculations, it becomes apparent that the adsorption tendencies of antibiotics are predominantly governed by the presence of AMD functional groups on the adsorbent surface. Specifically, hydrogen bonding (HB) and van der Waals (vdW) interactions between antibiotics and AMD groups serve as the primary mechanisms facilitating adsorption. Furthermore, we have observed that the adsorption behaviors of these antibiotics are influenced by their respective functional groups, molecular shapes, and sizes. Our molecular simulations delved into how the AMD/ML53A surfaces interact with antibiotics as PHCs. Moreover, various chemical quantum descriptors based on Frontier Molecular Orbitals (FMO) were explored to elucidate the extent of AMD/ML53A adsorption and to assess potential alterations in their electronic properties throughout the adsorption process. Monte Carlo simulation showed that ERY molecules adsorb stronger to the adsorbent in acidic and basic conditions than other contaminants, with high energies: -404.47 kcal/mol in acidic and -6375.26 kcal/mol in basic environments. Molecular dynamics (MD) simulations revealed parallel orientation for the ERY molecule's adsorption on AMD/ML53A with 80% rejection rate. In conclusion, our study highlighted the importance of modeling in developing practical solutions for removing antibiotics as PHCs from wastewater. The insights gained from our calculations can facilitate the design of more effective adsorption materials, ultimately leading to a more hygienic and sustainable ecosystem.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Majid Namayandeh Jorabchi
- Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, D-18059 Rostock, Germany; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Afsaneh Mazaheri
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | | | - Mahdis Afshar
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Golriz
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Energy Storage, Institute of Mechanics, Shiraz, Iran
| | - Marcos A L Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, 19060-900, Brazil
| |
Collapse
|
11
|
Salahshoori I, Yazdanbakhsh A, Baghban A. Machine learning-powered estimation of malachite green photocatalytic degradation with NML-BiFeO 3 composites. Sci Rep 2024; 14:8676. [PMID: 38622235 PMCID: PMC11018770 DOI: 10.1038/s41598-024-58976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
This study explores the potential of photocatalytic degradation using novel NML-BiFeO3 (noble metal-incorporated bismuth ferrite) compounds for eliminating malachite green (MG) dye from wastewater. The effectiveness of various Gaussian process regression (GPR) models in predicting MG degradation is investigated. Four GPR models (Matern, Exponential, Squared Exponential, and Rational Quadratic) were employed to analyze a dataset of 1200 observations encompassing various experimental conditions. The models have considered ten input variables, including catalyst properties, solution characteristics, and operational parameters. The Exponential kernel-based GPR model achieved the best performance, with a near-perfect R2 value of 1.0, indicating exceptional accuracy in predicting MG degradation. Sensitivity analysis revealed process time as the most critical factor influencing MG degradation, followed by pore volume, catalyst loading, light intensity, catalyst type, pH, anion type, surface area, and humic acid concentration. This highlights the complex interplay between these factors in the degradation process. The reliability of the models was confirmed by outlier detection using William's plot, demonstrating a minimal number of outliers (66-71 data points depending on the model). This indicates the robustness of the data utilized for model development. This study suggests that NML-BiFeO3 composites hold promise for wastewater treatment and that GPR models, particularly Matern-GPR, offer a powerful tool for predicting MG degradation. Identifying fundamental catalyst properties can expedite the application of NML-BiFeO3, leading to optimized wastewater treatment processes. Overall, this study provides valuable insights into using NML-BiFeO3 compounds and machine learning for efficient MG removal from wastewater.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Baghban
- Department of Process Engineering, NISOC Company, Ahvaz, Iran.
| |
Collapse
|