1
|
Safwi SR, Rizvi A, Usmani MA, Husain K, Brar K, Yadava D. Transcranial direct current stimulation and its effect on cognitive symptoms of schizophrenia: An updated review. Schizophr Res Cogn 2025; 39:100335. [PMID: 39512786 PMCID: PMC11541428 DOI: 10.1016/j.scog.2024.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
Objective Cognitive impairments in schizophrenia significantly affect functional outcomes and quality of life. This meta-analysis evaluates the effectiveness of transcranial direct current stimulation (tDCS) as an intervention for cognitive deficits in individuals with schizophrenia. Methods From May 20 to June 15, 2024, a systematic search of PubMed, Medline, Embase, and the Cochrane central register of controlled trials was conducted. After applying eligibility criteria, 13 randomized sham-controlled trials were included, involving 261 participants in the tDCS group and 247 in the sham group. Standardized mean difference (SMD) was computed to measure the effect size of cognitive outcomes. Statistical analyses were performed using a random-effects model to account for heterogeneity. Results The pooled analysis yielded an SMD of 0.09 (95 % CI: -0.17 to 0.35), indicating a non-significant difference between tDCS and sham on cognitive outcomes. Moderate heterogeneity (I2 = 44 %) was observed, attributed to variations in tDCS protocols, participant demographics, and cognitive assessment tools. Although certain studies showed improvements in specific domains like working memory, the overall impact of tDCS on cognitive symptoms was not statistically significant. Conclusions This meta-analysis underscores the lack of significant evidence for tDCS in improving cognitive deficits in schizophrenia. The findings highlight the urgent need for standardizing tDCS protocols and employing domain-specific cognitive assessments. This standardization, along with the collection of more domain-specific data, is crucial for future research and the improvement of current methodologies.
Collapse
Affiliation(s)
| | - Abid Rizvi
- Department of Behavioral Medicine and Psychiatry, West Virginia University, USA
| | | | - Karrar Husain
- Texas Tech University Health Science Center at Permian Basin, TX, USA
| | | | - Deep Yadava
- Department of Behavioral Medicine and Psychiatry, West Virginia University, USA
| |
Collapse
|
2
|
García-Fernández L, Romero-Ferreiro V, Padilla S, Wynn R, Pérez-Gálvez B, Álvarez-Mon MÁ, Sánchez-Cabezudo Á, Rodriguez-Jimenez R. Transcranial direct current stimulation (tDCS) enhances cognitive function in schizophrenia: A randomized double-blind sham-controlled trial. Psychiatry Res 2025; 344:116308. [PMID: 39647260 DOI: 10.1016/j.psychres.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
This study aimed to examine the cognitive effects of tDCS and the subjective cognitive improvement perceived by patients with schizophrenia. A total of 173 outpatients diagnosed with schizophrenia were recruited for this double-blind, randomized, placebo-controlled trial. Two different stimulation modes were applied: 2 mA 20 minutes active tDCS and sham tDCS. Ten daily sessions over 10 consecutive weekdays were applied, using a bifrontal montage (F3/F4). The Positive and Negative Syndrome Scale for Schizophrenia and the MATRICS Consensus Cognitive Battery (MCCB) were administered at baseline. The MCCB and a scale designed for measuring subjective cognitive improvement were administered to evaluate the outcomes. Post hoc comparisons revealed significant effects between the two types of interventions in Working Memory (EMM difference = 2.716, p < .001) and Neurocognition (EMM difference = 1.289, p = .007. Chi-squared tests demonstrated a significant association between subjective improvement and the treatment group, χ² (2) = 10.413, p = .005, Cramer's V = 0.295. A higher proportion of patients in active tDCS (68.6%) reported cognitive improvement compared to sham tDCS (31.4%). We concluded that tDCS can enhance cognition and generate a satisfactory perception of cognitive improvement in patients with schizophrenia.
Collapse
Affiliation(s)
- Lorena García-Fernández
- Clinical Medicine Department, Universidad Miguel Hernández, Investigador. Cibersam isciii, Crta. Nacional 332 s/n, Alicante 03550, Spain; Psychiatry Department, Hospital Universitario de San Juan, Alicante, Spain; CIBERSAM-ISCIII (Biomedical Research Networking Centre for Mental Health), Spain.
| | - Verónica Romero-Ferreiro
- CIBERSAM-ISCIII (Biomedical Research Networking Centre for Mental Health), Spain; European University of Madrid, Madrid, Spain; Health Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Sergio Padilla
- Clinical Medicine Department, Universidad Miguel Hernández, Investigador. Cibersam isciii, Crta. Nacional 332 s/n, Alicante 03550, Spain; Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rolf Wynn
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Education, ICT and Learning, Østfold University College, Halden, Norway
| | - Bartolomé Pérez-Gálvez
- Clinical Medicine Department, Universidad Miguel Hernández, Investigador. Cibersam isciii, Crta. Nacional 332 s/n, Alicante 03550, Spain; Psychiatry Department, Hospital Universitario de San Juan, Alicante, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities. University of Alcala, Alcala de Henares, Spain; Department of Psychiatry and Mental Health. Hospital Universitario Infanta Leonor, Madrid, Spain; Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid 28034, Spain
| | | | - Roberto Rodriguez-Jimenez
- CIBERSAM-ISCIII (Biomedical Research Networking Centre for Mental Health), Spain; Health Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain; Complutense University of Madrid (UCM), Madrid, Spain
| |
Collapse
|
3
|
Yeh TC, Lin YY, Tzeng NS, Kao YC, Chung YA, Chang CC, Fang HW, Chang HA. Effects of online high-definition transcranial direct current stimulation over left dorsolateral prefrontal cortex on predominant negative symptoms and EEG functional connectivity in patients with schizophrenia: a randomized, double-blind, controlled trial. Psychiatry Clin Neurosci 2025; 79:2-11. [PMID: 39317963 DOI: 10.1111/pcn.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
AIMS Schizophrenia, a debilitating mental disorder, is characterized by persistent negative symptoms such as avolition and anhedonia. Currently, there are no effective treatments available for these symptoms. Thus, our study aims to assess the efficacy of online high-definition transcranial direct current stimulation (online HD-tDCS) in addressing the negative symptoms of schizophrenia, utilizing a double-blind, randomized, sham-controlled trial design. METHODS Fifty-nine patients with schizophrenia were randomized to receive either active HD-tDCS or sham stimulation, targeting the left dorsolateral prefrontal cortex. Outcomes were measured by changes in the Positive and Negative Syndrome Scale Factor Score for Negative Symptom (PANSS-FSNS). Exact low-resolution electromagnetic tomography was used to assess the functional connectivity. RESULTS All 59 participants, including 50.84% females with an average age of 43.36 years, completed the trial. In the intention-to-treat analysis, patients receiving active HD-tDCS showed greater improvement in PANSS-FSNS scores compared to those receiving the sham procedure. The differences were 2.34 (95% confidence interval [CI], 1.28-3.40), 4.28 (95% CI, 2.93-5.62), and 4.91 (95% CI, 3.29-6.52) after the intervention, as well as at 1-week and 1-month follow-ups, respectively. A tingling sensation on the scalp was more common in the active group (63.3%) compared to the sham group (10.3%). Additionally, HD-tDCS was associated with a decrease in delta-band connectivity within the default mode network. CONCLUSIONS High-definition transcranial direct current stimulation was effective and safe in ameliorating negative symptoms in patients with schizophrenia when combined with online functional targeting.
Collapse
Affiliation(s)
- Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yen-Yue Lin
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital Beitou Branch, National Defense Medical Center, Taipei, Taiwan
| | - Yong-An Chung
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Shafiee-Kandjani AR, Chalabianloo F, Farhang S, Shanehbandi D, Shalchi B. A potential mechanism for tau protein modulating in schizophrenia with transcranial direct current stimulation intervention: A randomized controlled trial. BIOIMPACTS : BI 2024; 15:30274. [PMID: 40161936 PMCID: PMC11954739 DOI: 10.34172/bi.30274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 04/28/2024] [Indexed: 04/02/2025]
Abstract
Introduction Schizophrenia involves cognitive deficits, including working memory impairments. Researches indicate tau protein abnormalities may contribute to cognitive dysfunction in schizophrenia. While transcranial direct current stimulation (tDCS) shows promise in improving cognitive function, its effects on tau protein and working memory in schizophrenia remain unclear. Methods Forty participants were randomly assigned to receive either tDCS or sham treatment in this randomized clinical trial. The tDCS group received anodal stimulation over the left dorsolateral prefrontal cortex (DLPFC) for 20 minutes, while the sham group received a placebo. Serum tau levels and working memory were assessed before and after using ELISA and the digit span task. Results The results showed that the tDCS group had a significantly higher increase in phosphorylated tau protein serum levels compared to the sham group (5.53 ± 3.67 vs. 1.49 ± 3.90, P < 0.05). There was no significant mean change difference in serum levels of total tau protein between the groups. Females displayed higher increase in both total tau (1.88 ± 0.66 vs. 1.43 ± 0.80, P = 0.664) and p-tau levels (4.92 ± 0.88 vs. 2.11 ± 0.64, P = 0.014). The tDCS group also showed significantly higher improvement in working memory than the sham group (P < 0.05). Correlations between tau changes and memory enhancements approached significance (r(total tau) = 0.30; P = 0.051, r(p-tau) = 0.27; P = 0.063). Conclusion These findings reveal the tDCS impact on tau markers, shedding light on the disorder's molecular pathways and sex influences. Enhanced memory, linked to tau changes, suggests its potential as a treatment indicator.
Collapse
Affiliation(s)
| | - Farnaz Chalabianloo
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Farhang
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center, Groningen, The Netherlands
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Shalchi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Sabé M, Hyde J, Cramer C, Eberhard AL, Crippa A, Brunoni AR, Aleman A, Kaiser S, Baldwin DS, Garner M, Sentissi O, Fiedorowicz JG, Brandt V, Cortese S, Solmi M. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation Across Mental Disorders: A Systematic Review and Dose-Response Meta-Analysis. JAMA Netw Open 2024; 7:e2412616. [PMID: 38776083 PMCID: PMC11112448 DOI: 10.1001/jamanetworkopen.2024.12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 05/25/2024] Open
Abstract
Importance Noninvasive brain stimulation (NIBS) interventions have been shown to be efficacious in several mental disorders, but the optimal dose stimulation parameters for each disorder are unknown. Objective To define NIBS dose stimulation parameters associated with the greatest efficacy in symptom improvement across mental disorders. Data Sources Studies were drawn from an updated (to April 30, 2023) previous systematic review based on a search of PubMed, OVID, and Web of Knowledge. Study Selection Randomized clinical trials were selected that tested transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) for any mental disorder in adults aged 18 years or older. Data Extraction and Synthesis Two authors independently extracted the data. A 1-stage dose-response meta-analysis using a random-effects model was performed. Sensitivity analyses were conducted to test robustness of the findings. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Main Outcomes and Measures The main outcome was the near-maximal effective doses of total pulses received for TMS and total current dose in coulombs for tDCS. Results A total of 110 studies with 4820 participants (2659 men [61.4%]; mean [SD] age, 42.3 [8.8] years) were included. The following significant dose-response associations emerged with bell-shaped curves: (1) in schizophrenia, high-frequency (HF) TMS on the left dorsolateral prefrontal cortex (LDLPFC) for negative symptoms (χ2 = 9.35; df = 2; P = .009) and TMS on the left temporoparietal junction for resistant hallucinations (χ2 = 36.52; df = 2; P < .001); (2) in depression, HF-DLPFC TMS (χ2 = 14.49; df = 2; P < .001); (3) in treatment-resistant depression, LDLPFC tDCS (χ2 = 14.56; df = 2; P < .001); and (4) in substance use disorder, LDLPFC tDCS (χ2 = 33.63; df = 2; P < .001). The following significant dose-response associations emerged with plateaued or ascending curves: (1) in depression, low-frequency (LF) TMS on the right DLPFC (RDLPFC) with ascending curve (χ2 = 25.67; df = 2; P = .001); (2) for treatment-resistant depression, LF TMS on the bilateral DLPFC with ascending curve (χ2 = 5.86; df = 2; P = .004); (3) in obsessive-compulsive disorder, LF-RDLPFC TMS with ascending curve (χ2 = 20.65; df = 2; P < .001) and LF TMS on the orbitofrontal cortex with a plateaued curve (χ2 = 15.19; df = 2; P < .001); and (4) in posttraumatic stress disorder, LF-RDLPFC TMS with ascending curve (χ2 = 54.15; df = 2; P < .001). Sensitivity analyses confirmed the main findings. Conclusions and Relevance The study findings suggest that NIBS yields specific outcomes based on dose parameters across various mental disorders and brain regions. Clinicians should consider these dose parameters when prescribing NIBS. Additional research is needed to prospectively validate the findings in randomized, sham-controlled trials and explore how other parameters contribute to the observed dose-response association.
Collapse
Affiliation(s)
- Michel Sabé
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joshua Hyde
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, United Kingdom
| | - Catharina Cramer
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Antonia-Leonie Eberhard
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Alessio Crippa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - André Russowsky Brunoni
- Departamento e Instituto de Psiquiatria da Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, Brazil
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
| | - David S. Baldwin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom
- University Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | - Matthew Garner
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, United Kingdom
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, United Kingdom
| | - Othman Sentissi
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jess G. Fiedorowicz
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ontario, Canada
- Department of Psychiatry, University of Ottawa, Ontario, Canada
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, United Kingdom
- Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, United Kingdom
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, United Kingdom
- Hassenfeld Children’s Hospital at New York University Langone, New York University Child Study Center, New York, New York
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, United Kingdom
- DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University of Bari "Aldo Moro", Bari, Italy
| | - Marco Solmi
- The Ottawa Hospital and Ottawa Hospital Research Institute, Ontario, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ontario, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
- Department of Mental Health, The Ottawa Hospital, Ontario, Canada
- SIENCES Laboratory, Department of Psychiatry, University of Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Lisoni J, Nibbio G, Baldacci G, Zucchetti A, Cicale A, Zardini D, Miotto P, Deste G, Barlati S, Vita A. Improving depressive symptoms in patients with schizophrenia using bilateral bipolar-nonbalanced prefrontal tDCS: Results from a double-blind sham-controlled trial. J Affect Disord 2024; 349:165-175. [PMID: 38199388 DOI: 10.1016/j.jad.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Treating depressive symptoms in patients with schizophrenia is challenging. While transcranical Dicrect Current Stimulation (tDCS) improved other core symptoms of schizophrenia, conflicting results have been obtained on depressive symptoms. Thus, we aimed to expand current evidence on tDCS efficacy to improve depressive symptoms in patients with schizophrenia. METHODS A double-blind RCT was performed with patients randomized to 2 mA active-tDCS or sham-tDCS (15 daily sessions) with a bilateral bipolar-nonbalanced prefrontal placement (anode: left Dorsolateral prefrontal cortex; cathode: right orbitofrontal region). Clinical outcomes included variations of Calgary Depression Scale for Schizophrenia total score (CDSS) and of Depression-hopelessness and Guilty idea of reference-pathological guilt factors. Analysis of covariance was performed evaluating between-group changes over time. The presence/absence of probable clinically significant depression was determined when CDSS > 6. RESULTS As 50 outpatients were included (both groups, n = 25), significant improvements following active-tDCS were observed for CDSS total score (p = 0.001), Depression-hopelessness (p = 0.001) and Guilty idea of reference-pathological guilt (p = 0.03). Considering patients with CDSS>6 (n = 23), compared to sham, active-tDCS significantly improved CDSS total score (p < 0.001), Depression-hopelessness (p = 0.001) but Guilty idea of reference-pathological guilt only marginally improved (p = 0.051). Considering response rates of clinically significant depression, important reductions of CDSS score were observed (78 % of the sample scored ≤6; active-tDCS, n = 23; sham-tDCS, n = 16; p = 0.017). Early wakening item did not significantly change in any group. LIMITATIONS The study lacks a follow-up period and evaluation of tDCS effects on psychosocial functioning. CONCLUSIONS Bilateral bipolar-nonbalanced prefrontal tDCS is a successful protocol for the treatment of depressive symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Jacopo Lisoni
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy.
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giulia Baldacci
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Andrea Zucchetti
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Andrea Cicale
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Daniela Zardini
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paola Miotto
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Giacomo Deste
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Antonio Vita
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
7
|
Benster LL, Weissman CR, Stolz LA, Daskalakis ZJ, Appelbaum LG. Pre-clinical indications of brain stimulation treatments for non-affective psychiatric disorders, a status update. Transl Psychiatry 2023; 13:390. [PMID: 38097566 PMCID: PMC10721798 DOI: 10.1038/s41398-023-02673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Over the past two decades noninvasive brain stimulation (NIBS) techniques have emerged as powerful therapeutic options for a range of psychiatric and neurological disorders. NIBS are hypothesized to rebalance pathological brain networks thus reducing symptoms and improving functioning. This development has been fueled by controlled studies with increasing size and rigor aiming to characterize how treatments induce clinically effective change. Clinical trials of NIBS for specific indications have resulted in federal approval for unipolar depression, bipolar depression, smoking cessation, and obsessive-compulsive disorder in the United States, and several other indications worldwide. As a rapidly emerging field, there are numerous pre-clinical indications currently in development using a variety of electrical and magnetic, non-convulsive, and convulsive approaches. This review discusses the state-of-the-science surrounding promising avenues of NIBS currently in pre-approval stages for non-affective psychiatric disorders. We consider emerging therapies for psychosis, anxiety disorders, obsessive-compulsive disorder, and borderline personality disorder, utilizing transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and magnetic seizure therapy (MST), with an additional brief section for early-stage techniques including transcranial focused ultrasound stimulation (tFUS) and transcranial alternating current stimulation (tACS). As revealed in this review, there is considerable promise across all four psychiatric indications with different NIBS approaches. Positive findings are notable for the treatment of psychosis using tDCS, MST, and rTMS. While rTMS is already FDA approved for the treatment of obsessive-compulsive disorder, methodologies such as tDCS also demonstrate potential in this condition. Emerging techniques show promise for treating non-affective disorders likely leading to future regulatory approvals.
Collapse
Affiliation(s)
- Lindsay L Benster
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA.
| | - Cory R Weissman
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Louise A Stolz
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Zafiris J Daskalakis
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| | - Lawrence G Appelbaum
- Joint Doctoral Program in Clinical Psychology, SDSU/UC San Diego, San Diego, CA, USA
- Department of Psychiatry, UC San Diego School of Medicine, San Diego, CA, USA
| |
Collapse
|
8
|
Li Q, Gong Y, Cui Y, Cheng C, Wang Y, Huang G, Gu W, Meng B, Wang M, Wu D, Zhao S, Yang X, Qin W, Sun J, Guo T. Efficacy of transcutaneous electrical acupoint stimulation for patients with first-episode schizophrenia: An 8-week, preliminary, randomized controlled trial. Psychiatry Res 2023; 325:115255. [PMID: 37245485 DOI: 10.1016/j.psychres.2023.115255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Combination therapy with antipsychotics has been investigated for treating schizophrenia, and has shown clear advantages among non-invasive therapies. Transcutaneous electrical acupoint stimulation (TEAS) is a novel non-invasive treatment with definite efficacy in treating mental disorders. The current study aimed to investigate the efficacy of TEAS in further improving the psychotic symptoms in patients with first-episode schizophrenia (FES) being treated with pharmacological drugs. This 8-week, preliminary, sham-controlled, randomized clinical trial was conducted in patients with FES to compare the efficacy of TEAS and sham TEAS in combination with aripiprazole treatment. The primary outcome was a change in the Positive and Negative Syndrome Scale (PANSS) score after ending the intervention (Week 8). A total of 49 participants completed the whole treatment cycle. The linear mixed-effects regression for PANSS indicated a significant time × group interaction (F(2, 116)=9.79, p <0.001). The PANSS score differed by 8.77 points (95% CI, -2.07 to -15.47 points; p=.01) between the TEAS group and the sham TEAS group after 8 weeks of treatment; this difference was significant. This study indicates that 8 weeks of TEAS combined with aripiprazole treatment can effectively treat FES. Thus, TEAS is an effective combination therapy to improve the psychiatric symptoms of FES.
Collapse
Affiliation(s)
- Qifu Li
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yi Gong
- Yunnan University of Chinese Medicine Teaching Hospital/Kunming Psychiatry Hospital, Kunming, 650000, China
| | - Yapeng Cui
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xian, 710126, China
| | - Chen Cheng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xian, 710126, China
| | - Yin Wang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xian, 710126, China
| | - Gaoyangzi Huang
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Weiqiang Gu
- Yunnan University of Chinese Medicine Teaching Hospital/Kunming Psychiatry Hospital, Kunming, 650000, China
| | - Bin Meng
- Yunnan University of Chinese Medicine Teaching Hospital/Kunming Psychiatry Hospital, Kunming, 650000, China
| | - Mian Wang
- Yunnan University of Chinese Medicine Teaching Hospital/Kunming Psychiatry Hospital, Kunming, 650000, China
| | - Dongniya Wu
- Yunnan University of Chinese Medicine Teaching Hospital/Kunming Psychiatry Hospital, Kunming, 650000, China
| | - Siwen Zhao
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xuejuan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xian, 710126, China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xian, 710126, China
| | - Jinbo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xian, 710126, China.
| | - Taipin Guo
- School of Second Clinical Medicine/The Second Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming 650500, China; Key Laboratory for Acupuncture, Moxibustion and Tuina Prevention and Treatment of Brain Diseases in Yunnan Universities, Kunming, China.
| |
Collapse
|
9
|
Ma Y, Gong A, Nan W, Ding P, Wang F, Fu Y. Personalized Brain-Computer Interface and Its Applications. J Pers Med 2022; 13:46. [PMID: 36675707 PMCID: PMC9861730 DOI: 10.3390/jpm13010046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Brain-computer interfaces (BCIs) are a new technology that subverts traditional human-computer interaction, where the control signal source comes directly from the user's brain. When a general BCI is used for practical applications, it is difficult for it to meet the needs of different individuals because of the differences among individual users in physiological and mental states, sensations, perceptions, imageries, cognitive thinking activities, and brain structures and functions. For this reason, it is necessary to customize personalized BCIs for specific users. So far, few studies have elaborated on the key scientific and technical issues involved in personalized BCIs. In this study, we will focus on personalized BCIs, give the definition of personalized BCIs, and detail their design, development, evaluation methods and applications. Finally, the challenges and future directions of personalized BCIs are discussed. It is expected that this study will provide some useful ideas for innovative studies and practical applications of personalized BCIs.
Collapse
Affiliation(s)
- Yixin Ma
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, China
| | - Anmin Gong
- School of Information Engineering, Chinese People’s Armed Police Force Engineering University, Xian 710086, China
| | - Wenya Nan
- Department of Psychology, College of Education, Shanghai Normal University, Shanghai 200234, China
| | - Peng Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, China
| | - Fan Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunfa Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
10
|
Lisoni J, Baldacci G, Nibbio G, Zucchetti A, Butti Lemmi Gigli E, Savorelli A, Facchi M, Miotto P, Deste G, Barlati S, Vita A. Effects of bilateral, bipolar-nonbalanced, frontal transcranial Direct Current Stimulation (tDCS) on negative symptoms and neurocognition in a sample of patients living with schizophrenia: Results of a randomized double-blind sham-controlled trial. J Psychiatr Res 2022; 155:430-442. [PMID: 36182772 DOI: 10.1016/j.jpsychires.2022.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Negative symptoms (NS), conceived as Avolition-Apathy (AA) and Expressive Deficit (EXP) domains, and neurocognitive impairments represent unmet therapeutic needs for patients with schizophrenia. The present study investigated if bilateral bipolar-nonbalanced frontal transcranial Direct Current Stimulation (tDCS) could improve these psychopathological dimensions. This randomized, double-blind, sham-controlled study (active-tDCS versus sham-tDCS, both, n = 25) included 50 outpatients diagnosed with schizophrenia clinically stabilized. Patients received 20-min 2 mA active-tDCS or sham-tDCS (anode: left Dorsolateral Prefrontal Cortex; cathode: right orbitofrontal region). Primary outcomes included: PANSS-Negative subscale, Negative Factor (Neg-PANSS), AA and EXP domains; neurocognitive performance at Brief Assessment of Cognition in Schizophrenia. Secondary outcomes included: PANSS subscales and total score, Disorganized/Concrete (DiscC-PANSS) and Positive Factors, Clinical Global Impression (CGI) scores, clinical insight at Scale to Assess Unawareness of Mental Disorder (SUMD). Analysis of covariance (ANCOVA) was performed evaluating between-group changes over time. Significant improvements following active-tDCS were observed for all NS measures (all, p < 0.001; d > 0.8) and for working memory (p = 0.025, d = 0.31). Greater variations following to active treatment emerged also for PANSS-General Psychopathology subscale (p < 0.001; d = 0.54), PANSS total score (p < 0.001; d = 0.69), CGI indexes (all, p < 0.001; d > 0.6), DiscC-PANSS (p < 0.001; d = 0.80) and SUMD-general Unawareness index (p = 0.005; d = 0.15) but not for positive symptoms and others insight measures. Good safety/tolerability profiles were found. Bilateral bipolar-nonbalanced frontal-tDCS is a non-pharmacological approach in schizophrenia effectively improving NS, particularly the AA and EXP domains, probably acting by modulating dysfunctional cortical-subcortical networks. Preliminary results also suggest working memory improvements following tDCS. Further studies are needed to confirm the neurobiological basis of these results.
Collapse
Affiliation(s)
- Jacopo Lisoni
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Giulia Baldacci
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Gabriele Nibbio
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea Zucchetti
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Arianna Savorelli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Michele Facchi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Paola Miotto
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Giacomo Deste
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Vita
- Department of Mental Health and Addiction Services, ASST Spedali Civili of Brescia, Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
11
|
Tseng PT, Zeng BS, Hung CM, Liang CS, Stubbs B, Carvalho AF, Brunoni AR, Su KP, Tu YK, Wu YC, Chen TY, Li DJ, Lin PY, Hsu CW, Chen YW, Suen MW, Satogami K, Takahashi S, Wu CK, Yang WC, Shiue YL, Huang TL, Li CT. Assessment of Noninvasive Brain Stimulation Interventions for Negative Symptoms of Schizophrenia: A Systematic Review and Network Meta-analysis. JAMA Psychiatry 2022; 79:770-779. [PMID: 35731533 PMCID: PMC9218931 DOI: 10.1001/jamapsychiatry.2022.1513] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IMPORTANCE Negative symptoms have a detrimental impact on functional outcomes and quality of life in people with schizophrenia, and few therapeutic options are considered effective for this symptomatic dimension. Studies have suggested that noninvasive brain stimulation (NIBS) interventions may be effective in treating negative symptoms. However, the comparative efficacy of different NIBS protocols for relieving negative symptoms remains unclear. OBJECTIVE To compare the efficacy and acceptability of different NIBS interventions for treating negative symptoms. DATA SOURCES The ClinicalKey, Cochrane CENTRAL, Embase, ProQuest, PubMed, ScienceDirect, ClinicalTrials.gov, and Web of Science electronic databases were systematically searched from inception through December 7, 2021. STUDY SELECTION A frequentist model network meta-analysis was conducted to assess the pooled findings of trials that evaluated the efficacy of repetitive transcranial magnetic stimulation (rTMS), theta-burst stimulation, transcranial random noise stimulation, transcutaneous vagus nerve stimulation, and transcranial direct current stimulation on negative symptoms in schizophrenia. Randomized clinical trials (RCTs) examining NIBS interventions for participants with schizophrenia were included. DATA EXTRACTION AND SYNTHESIS The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline was followed. Data were independently extracted by multiple observers. The pair-wise meta-analytic procedures were conducted using a random-effects model. MAIN OUTCOMES AND MEASURES The coprimary outcomes were changes in the severity of negative symptoms and acceptability (ie, dropout rates owing to any reason). Secondary outcomes were changes in positive and depressive symptoms. RESULTS Forty-eight RCTs involving 2211 participants (mean [range] age, 38.7 [24.0-57.0] years; mean [range] proportion of female patients, 30.6% [0%-70.0%]) were included. Compared with sham control interventions, excitatory NIBS strategies (standardized mean difference [SMD]: high-definition transcranial random noise stimulation, -2.19 [95% CI, -3.36 to -1.02]; intermittent theta-burst stimulation, -1.32 [95% CI, -1.88 to -0.76]; anodal transcranial direct current stimulation, -1.28 [95% CI, -2.55 to -0.02]; high-frequency rTMS, -0.43 [95% CI, -0.68 to -0.18]; extreme high-frequency rTMS, -0.45 [95% CI, -0.79 to -0.12]) over the left dorsolateral prefrontal cortex with or without other inhibitory stimulation protocols in the contralateral regions of the brain were associated with significantly larger reductions in negative symptoms. Acceptability did not significantly differ between the groups. CONCLUSIONS AND RELEVANCE In this network meta-analysis, excitatory NIBS protocols over the left dorsolateral prefrontal cortex were associated with significantly large improvements in the severity of negative symptoms. Because relatively few studies were available for inclusion, additional well-designed, large-scale RCTs are warranted.
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan,Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Syuan Zeng
- Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung, Taiwan
| | - Chao-Ming Hung
- Division of General Surgery, Department of Surgery, E-Da Cancer Hospital, Kaohsiung, Taiwan,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Andre F. Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Andre R. Brunoni
- Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil,Departamento de Ciências Médicas, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil
| | - Kuan-Pin Su
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom,Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan,College of Medicine, China Medical University, Taichung, Taiwan,An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology & Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dian-Jeng Li
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung, Taiwan
| | - Mein-Woei Suen
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan,Gender Equality Education and Research Center, Asia University, Taichung, Taiwan,Department of Medical Research, Asia University Hospital, Asia University, Taichung, Taiwan,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kazumi Satogami
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan,Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan,Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Japan,Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan,Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan
| | - Ching-Kuan Wu
- Department of Psychiatry, Kaohsiung Kingswood Psychiatric Clinic, Kaohsiung, Taiwan
| | - Wei-Cheng Yang
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan,Department of Adult Psychiatry, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan,Department of Psychiatry, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan,Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan,Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
12
|
Adam O, Blay M, Brunoni AR, Chang HA, Gomes JS, Javitt DC, Jung DU, Kantrowitz JT, Koops S, Lindenmayer JP, Palm U, Smith RC, Sommer IE, Valiengo LDCL, Weickert TW, Brunelin J, Mondino M. Efficacy of Transcranial Direct Current Stimulation to Improve Insight in Patients With Schizophrenia: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Schizophr Bull 2022; 48:1284-1294. [PMID: 35820035 PMCID: PMC9673267 DOI: 10.1093/schbul/sbac078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Impaired insight into the illness and its consequences is associated with poor outcomes in schizophrenia. While transcranial direct current stimulation (tDCS) may represent a potentially effective treatment strategy to relieve various symptoms of schizophrenia, its impact on insight remains unclear. To investigate whether tDCS would modulate insight in patients with schizophrenia, we undertook a meta-analysis based on results from previous RCTs that investigated the clinical efficacy of tDCS. We hypothesize that repeated sessions of tDCS will be associated with insight improvement among patients. STUDY DESIGN PubMed and ScienceDirect databases were systematically searched to identify RCTs that delivered at least 10 tDCS sessions in patients with schizophrenia. The primary outcome was the change in insight score, assessed by the Positive and Negative Syndrome Scale (PANSS) item G12 following active tDCS sessions as opposed to sham stimulation. Effect sizes were calculated for all studies and pooled using a random-effects model. Meta-regression and subgroup analyses were conducted. STUDY RESULTS Thirteen studies (587 patients with schizophrenia) were included. A significant pooled effect size (g) of -0.46 (95% CI [-0.78; -0.14]) in favor of active tDCS was observed. Age and G12 score at baseline were identified as significant moderators, while change in total PANSS score was not significant. CONCLUSIONS Ten sessions of active tDCS with either frontotemporoparietal or bifrontal montage may improve insight into the illness in patients with schizophrenia. The effect of this treatment could contribute to the beneficial outcomes observed in patients following stimulation.
Collapse
Affiliation(s)
- Ondine Adam
- Pôle Est, Centre Hospitalier Le Vinatier, Bron, France,INSERM U1028; CNRS UMR5292; PSYR2 Team; Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Lyon, France
| | - Martin Blay
- Pôle Est, Centre Hospitalier Le Vinatier, Bron, France
| | - Andre R Brunoni
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Laboratório de Neurociências (LIM-27), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil,Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, Serviço Interdisciplinar de Neuromodulação (SIN), Hospital das Clínicas HCFMUSP, São Paulo, Brazil
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - July S Gomes
- Interdisciplinary Laboratory of Clinical Neurosciences, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel C Javitt
- Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA,Nathan Kline Institute, Orangeburg, NY, USA
| | - Do-Un Jung
- Department of Psychiatry, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Joshua T Kantrowitz
- Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA,Nathan Kline Institute, Orangeburg, NY, USA
| | - Sanne Koops
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neurosciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Jean-Pierre Lindenmayer
- Nathan Kline Institute, Orangeburg, NY, USA,New York University School of Medicine, New York, NY, USA,Manhattan Psychiatric Center, New York, NY, USA
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany,Medical Park Chiemseeblick, Bernau-Felden, Germany
| | - Robert C Smith
- Nathan Kline Institute, Orangeburg, NY, USA,New York University School of Medicine, New York, NY, USA
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neurosciences, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Leandro do Costa Lane Valiengo
- Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Laboratório de Neurociências (LIM-27), Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil,Departamento e Instituto de Psiquiatria, Faculdade de Medicina, Universidade de São Paulo, Serviço Interdisciplinar de Neuromodulação (SIN), Hospital das Clínicas HCFMUSP, São Paulo, Brazil
| | - Thomas W Weickert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW, Australia
| | | | - Marine Mondino
- To whom correspondence should be addressed; PsyR2 team, Centre Hospitalier le Vinatier, batiment 416, 1st floor, 95 boulevard Pinel, 69678 Bron, Cedex BP 30039, France; tel: (+33)4 37 91 55 65, fax: (+33)4 37 91 55 49, e-mail:
| |
Collapse
|
13
|
A meta-analytic review of transcranial direct current stimulation (tDCS) on general psychopathology symptoms of schizophrenia; immediate improvement followed by a return to baseline. Psychiatry Res 2022; 310:114471. [PMID: 35227989 PMCID: PMC8994865 DOI: 10.1016/j.psychres.2022.114471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a promising tool for alleviating positive and negative symptoms of schizophrenia, but its role in functional outcome remains uncertain. This meta-analysis examined the effects of tDCS on general psychopathology symptoms (GPS) from the Positive and Negative Syndrome Scale (PANSS) because GPS are closely associated with daily functioning. Literature search using Medline and PsycINFO identified 8 randomized controlled trials with tDCS and PANSS. The GPS were significantly reduced after tDCS but there was no evidence for long-term treatment effects. Further research is needed to optimize the dosing of tDCS and to understand individual differences in treatment response.
Collapse
|
14
|
Fathi Azar E, Hosseinzadeh S, Nosrat Abadi M, Sayad Nasiri M, Haghgoo HA. Impact of Psychosocial Occupational Therapy Combined with Anodal Transcranial Direct Current Stimulation to the Left Dorsolateral Prefrontal Cortex on the Cognitive Performance of Patients with Schizophrenia: A Randomized Controlled Trial. Hong Kong J Occup Ther 2022; 34:121-131. [PMID: 34987350 PMCID: PMC8721578 DOI: 10.1177/15691861211065155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/21/2021] [Indexed: 11/15/2022] Open
Abstract
Background The most common cognitive dysfunctions in patients with schizophrenia are information processing, memory, and learning. Based on the hypothesis of rehabilitation and brain stimulation in memory and learning, adding a form of neuromodulation to conventional rehabilitation might increase the effectiveness of treatments. Aims To explore the effects of psychosocial occupational therapy combined with anodal Transcranial Direct Current Stimulation (tDCS) on cognitive performance in patients with Schizophrenia. Methods Twenty-four patients diagnosed with schizophrenia were randomized into the experimental and control groups. We used The Cambridge Neuropsychological Test Automated Battery (CANTAB) and the Loewenstein Occupational Therapy Cognitive Assessment battery (LOTCA) to assess spatial recognition, attention, visual memory, learning abilities, and high-level cognitive functions like problem-solving. All participants received customized psychosocial occupational therapy activities. Furthermore, the experimental group received 12 sessions of active anodal tDCS for 20 minutes with 2 mA intensity on the left dorsolateral prefrontal cortex (DLPFC) while the patients in the sham group received sham tDCS. Results Combining tDCS to conventional psychosocial occupational therapy resulted in a significant increase in spatial memory, visual learning, and attention. Conclusions Anodal tDCS on the left DLPFC improved visual memory, attention, and learning abilities. Contrary to our expectations, we could not find any changes in complex and more demanding cognitive functions.
Collapse
Affiliation(s)
- Elahe Fathi Azar
- MSc in Occupational Therapy, The University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Samaneh Hosseinzadeh
- Biostatics Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoud Nosrat Abadi
- Clinical Psychology Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohamad Sayad Nasiri
- Assistant Professor of Neurology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hojjat Allah Haghgoo
- Occupational Therapy Department, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Hojjat Allah Haghgoo, Occupational Therapy Department, The University of Social Welfare and Rehabilitation Sciences, Kodakyar st.,Velenjak, Tehran, 1985713871, Iran.
| |
Collapse
|
15
|
Ning Y, Zheng S, Feng S, Zhang B, Jia H. Potential Locations for Non-Invasive Brain Stimulation in Treating Schizophrenia: A Resting-State Functional Connectivity Analysis. Front Neurol 2022; 12:766736. [PMID: 34975725 PMCID: PMC8715096 DOI: 10.3389/fneur.2021.766736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Non-invasive brain stimulation (NIBS) techniques have been widely used for the purpose of improving clinical symptoms of schizophrenia. However, the ambiguous stimulation targets may limit the efficacy of NIBS for schizophrenia. Exploring effective stimulation targets may improve the clinical efficacy of NIBS in schizophrenia. Methods: We first conducted a neurosynth-based meta-analysis of 715 functional magnetic resonance imaging studies to identify schizophrenia-related brain regions as regions of interest. Then, we performed the resting-state functional connectivity analysis in 32 patients with first-episode schizophrenia to find brain surface regions correlated with the regions of interest in three pipelines. Finally, the 10–20 system coordinates corresponding to the brain surface regions were considered as potential targets for NIBS. Results: We identified several potential targets of NIBS, including the bilateral dorsal lateral prefrontal cortex, supplementary motor area, bilateral inferior parietal lobule, temporal pole, medial prefrontal cortex, precuneus, superior and middle temporal gyrus, and superior and middle occipital gyrus. Notably, the 10-20 system location of the bilateral dorsal lateral prefrontal cortex was posterior to F3 (F4), not F3 (F4). Conclusion: Conclusively, our findings suggested that the stimulation locations corresponding to these potential targets might help clinicians optimize the application of NIBS therapy in individuals with schizophrenia.
Collapse
Affiliation(s)
- Yanzhe Ning
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sisi Zheng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Sitong Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Binlong Zhang
- Department of Acupuncture and Moxibustion, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongxiao Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Stuchlíková Z, Klírová M. A Literature Mini-Review of Transcranial Direct Current Stimulation in Schizophrenia. Front Psychiatry 2022; 13:874128. [PMID: 35530026 PMCID: PMC9069055 DOI: 10.3389/fpsyt.2022.874128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neurostimulation method that utilizes the effect of low-current on brain tissue. In recent years, the effect of transcranial direct current stimulation has been investigated as a therapeutic modality in various neuropsychiatric indications, one of them being schizophrenia. This article aims to provide an overview of the potential application and effect of tDCS in treating patients with schizophrenia. A literature search was performed using the PubMed, Web of Science, and Google Scholar databases for relevant research published from any date until December 2021. Eligible studies included those that used randomized controlled parallel-group design and focused on the use of transcranial direct current stimulation for the treatment of positive, negative, or cognitive symptoms of schizophrenia. Studies were divided into groups based on the focus of research and an overview is provided in separate sections and tables in the article. The original database search yielded 705 results out of which 27 randomized controlled trials met the eligibility criteria and were selected and used for the purpose of this article. In a review of the selected trials, transcranial direct current stimulation is a safe and well-tolerated method that appears to have the potential as an effective modality for the treatment of positive and negative schizophrenic symptoms and offers promising results in influencing cognition. However, ongoing research is needed to confirm these conclusions and to further specify distinct application parameters.
Collapse
Affiliation(s)
- Zuzana Stuchlíková
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia.,Hospital České Budĕjovice, a.s., České Budĕjovice, Czechia
| | - Monika Klírová
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
17
|
Sun CH, Jiang WL, Cai DB, Wang ZM, Sim K, Ungvari GS, Huang X, Zheng W, Xiang YT. Adjunctive multi-session transcranial direct current stimulation for neurocognitive dysfunction in schizophrenia: A meta-analysis. Asian J Psychiatr 2021; 66:102887. [PMID: 34740126 DOI: 10.1016/j.ajp.2021.102887] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/21/2021] [Accepted: 10/14/2021] [Indexed: 01/13/2023]
Abstract
Findings of multi-session transcranial direct current stimulation (tDCS) as an adjunctive treatment of neurocognitive dysfunction in schizophrenia have been inconsistent. This meta-analysis of randomized controlled trials (RCTs) investigated the neurocognitive effects of adjunctive multi-session tDCS for schizophrenia. Twelve RCTs covering 418 schizophrenia patients were included and analyzed in this meta-analysis. The RevMan software (Version 5.3) was used to calculate risk ratios (RRs) and standardized mean differences (SMDs) with their 95% confidence intervals (CIs). Adjunctive tDCS outperformed the comparator in improving working memory deficits (SMD = 0.34, 95% CI: 0.03, 0.65; I2 = 52%; p = 0.03), but no significant effects were found in other cognitive domains. No group differences were found with regard to total psychopathology measured by the Brief Psychiatric Rating Scale and the Positive and Negative Symptom Scale (SMD =-0.29, 95%CI: -0.61, 0.03; I2 = 50%, p = 0.07) and discontinuation due to any reason (RR=0.80, 95%CI: 0.39, 1.66; I2 = 9%, p = 0.56). Adjunctive tDCS appears to have a significant therapeutic effect improving the working memory deficits in schizophrenia.
Collapse
Affiliation(s)
- Chen-Hui Sun
- Qingdao Mental Health Center, Qingdao University, Shandong, China
| | | | - Dong-Bin Cai
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhi-Min Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital & the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Kang Sim
- West Region, Institute of Mental Health, Buangkok Green Medical Park, Singapore, Singapore
| | - Gabor S Ungvari
- University of Notre Dame Australia, Fremantle, Australia; Division of Psychiatry, School of Medicine, University of Western Australia, Perth, Australia
| | - Xiong Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.
| | - Yu-Tao Xiang
- Unit of Psychiatry, Department of Public Health and Medicinal Administration, & Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macao SAR, China; Institute of Advanced Studies in Humanities and Social Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
18
|
Habelt B, Wirth C, Afanasenkau D, Mihaylova L, Winter C, Arvaneh M, Minev IR, Bernhardt N. A Multimodal Neuroprosthetic Interface to Record, Modulate and Classify Electrophysiological Biomarkers Relevant to Neuropsychiatric Disorders. Front Bioeng Biotechnol 2021; 9:770274. [PMID: 34805123 PMCID: PMC8595111 DOI: 10.3389/fbioe.2021.770274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Most mental disorders, such as addictive diseases or schizophrenia, are characterized by impaired cognitive function and behavior control originating from disturbances within prefrontal neural networks. Their often chronic reoccurring nature and the lack of efficient therapies necessitate the development of new treatment strategies. Brain-computer interfaces, equipped with multiple sensing and stimulation abilities, offer a new toolbox whose suitability for diagnosis and therapy of mental disorders has not yet been explored. This study, therefore, aimed to develop a biocompatible and multimodal neuroprosthesis to measure and modulate prefrontal neurophysiological features of neuropsychiatric symptoms. We used a 3D-printing technology to rapidly prototype customized bioelectronic implants through robot-controlled deposition of soft silicones and a conductive platinum ink. We implanted the device epidurally above the medial prefrontal cortex of rats and obtained auditory event-related brain potentials in treatment-naïve animals, after alcohol administration and following neuromodulation through implant-driven electrical brain stimulation and cortical delivery of the anti-relapse medication naltrexone. Towards smart neuroprosthetic interfaces, we furthermore developed machine learning algorithms to autonomously classify treatment effects within the neural recordings. The neuroprosthesis successfully captured neural activity patterns reflecting intact stimulus processing and alcohol-induced neural depression. Moreover, implant-driven electrical and pharmacological stimulation enabled successful enhancement of neural activity. A machine learning approach based on stepwise linear discriminant analysis was able to deal with sparsity in the data and distinguished treatments with high accuracy. Our work demonstrates the feasibility of multimodal bioelectronic systems to monitor, modulate and identify healthy and affected brain states with potential use in a personalized and optimized therapy of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Christopher Wirth
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Dzmitry Afanasenkau
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Lyudmila Mihaylova
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, Charite University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - Mahnaz Arvaneh
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Ivan R. Minev
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
19
|
Bulubas L, Goerigk S, Gomes JS, Brem AK, Carvalho JB, Pinto BS, Elkis H, Gattaz WF, Padberg F, Brunoni AR, Valiengo L. Cognitive outcomes after tDCS in schizophrenia patients with prominent negative symptoms: Results from the placebo-controlled STARTS trial. Schizophr Res 2021; 235:44-51. [PMID: 34304146 DOI: 10.1016/j.schres.2021.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022]
Abstract
Cognitive deficits and negative symptoms in schizophrenia are associated with poor functional outcomes and limited in terms of treatment. The Schizophrenia Treatment With Electric Transcranial Stimulation (STARTS) trial has shown efficacy of transcranial direct current stimulation (tDCS) for improving negative symptoms. In this secondary analysis, we investigate its effects on cognitive performance. In STARTS, a double-blinded, sham-controlled, randomized clinical trial, patients were treated with twice-daily, 20-min, 2-mA fronto-temporal tDCS over 5 days or sham-tDCS. In 90 patients, we evaluated the cognitive performance up to 12 weeks post-treatment. We found that active-tDCS showed no beneficial effects over sham-tDCS in any of the tests. Based on a 5-factor cognitive model, improvements of executive functions and delayed memory were observed in favor of sham-tDCS. Overall, the applied active-tDCS protocol, primarily designed to improve negative symptoms, did not promote cognitive improvement. We discuss possible protocol modification potentially required to increase tDCS effects on cognition. ClinicalTrials.gov identifier: NCT02535676.
Collapse
Affiliation(s)
- Lucia Bulubas
- Department of Psychiatry and Psychotherapy, LMU Hospital, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Stephan Goerigk
- Department of Psychiatry and Psychotherapy, LMU Hospital, Munich, Germany; Department of Psychological Methodology and Assessment, LMU, Munich, Germany; Hochschule Fresenius, University of Applied Sciences, Munich, Germany
| | - July S Gomes
- Schizophrenia Program, Dep. of Psychiatry, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland; Department of Neuropsychology, Lucerne Psychiatry, Switzerland; Division of Interventional Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Juliana B Carvalho
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bianca S Pinto
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Helio Elkis
- Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, LMU Hospital, Munich, Germany
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | - Leandro Valiengo
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Dharani R, Goyal N, Mukherjee A, Umesh S. Adjuvant High-Definition Transcranial Direct Current Stimulation for Negative Symptoms in Schizophrenia: A Pilot Study. J ECT 2021; 37:195-201. [PMID: 33661184 DOI: 10.1097/yct.0000000000000756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE In schizophrenia, negative symptoms account for a substantial amount of the comorbidity resulting in poor performance in social interaction, interpersonal relationships, economic functioning, and recreational activities. Research has implicated hypofrontality in the pathogenesis of negative symptoms of schizophrenia. Conventional transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex has attracted significant interest as an add-on treatment for negative symptoms in schizophrenia. High-definition tDCS (HD-tDCS), an optimized form of tDCS, has the potential for more focalized neuromodulation. Hence, we aimed to evaluate the efficacy of HD-tDCS over the left dorsolateral prefrontal cortex in the improvement of negative symptoms in schizophrenia. METHODS Fourteen patients with schizophrenia with predominantly negative symptoms were enrolled for this pilot, randomized, sham-controlled, double-blind trial. Each participant received 10 sessions of HD-tDCS at 2 mA for 20 minutes twice daily over 5 days. Negative symptoms were assessed with the Scale for Assessment of Negative Symptoms and Positive and Negative Syndrome Scale for Schizophrenia. The Calgary Depression Scale for Schizophrenia was used to rule out depressive symptoms. Assessments were carried out at baseline and at 2 weeks. RESULTS The improvement in negative symptoms in the active group was statistically significant at P value of 0.05 as compared with the sham group. CONCLUSION These results suggest that HD-tDCS may lead to improvement in negative symptoms of schizophrenia. Its use as an adjunct to pharmacological treatment of negative symptoms may be worth considering.
Collapse
Affiliation(s)
- Ramamoorthy Dharani
- From the K. S. Mani Centre for Cognitive Neurosciences and Department of Psychiatry, Central Institute of Psychiatry, Ranchi, Jharkhand, India
| | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW To provide an update of recent studies describing the effects of transcranial direct current stimulation (tDCS) on patients with schizophrenia, with particular focus on auditory verbal hallucinations (AVH), cognitive deficits, and negative symptoms. RECENT FINDINGS As a low-cost, easy-to-use neuromodulation technique, tDCS may have clinical implications for those suffering from treatment-persistent AVH, negative symptoms, and cognitive symptoms in schizophrenia. Over the past decade, tDCS has shown no effects for negative symptoms, except when used at a high frequency of sessions, and inconclusive results for AVH and cognitive symptoms. The treatment has little to no adverse effects. SUMMARY The studies reviewed here support the need for further investigation and empirical data regarding the use of tDCS. The underlying mechanisms of tDCS as well as the most effective stimulation parameters must be better understood. Findings support the need for increased duration and frequency of tDCS sessions. One of the next steps is the investigation of effects of concomitant nonpharmacological treatments with tDCS.
Collapse
|
22
|
Liu Y, Gu N, Cao X, Zhu Y, Wang J, Smith RC, Li C. Effects of transcranial electrical stimulation on working memory in patients with schizophrenia: A systematic review and meta-analysis. Psychiatry Res 2021; 296:113656. [PMID: 33360429 DOI: 10.1016/j.psychres.2020.113656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023]
Abstract
To investigate the immediate and lasting effects of transcranial electrical stimulation (tES) on working memory (WM) in schizophrenia. We performed a literature search to identify randomized controlled trials (RCTs) evaluating the ability of tES to ameliorate WM. Twelve studies were included: 215 patients in the active stimulation group and 214 in the sham stimulation group. Meta-analysis demonstrated a significant efficacy of tES on WM in follow up, a summary of one or more assessments weeks after the last tES session (standardized mean difference (SMD) 0.33, 95% confidence interval (CI) 0.04 to 0.62; p = 0.02; n = 190, 4 studies; I2 = 33%) compared to sham tES, while non-significant results were observed for WM assessed immediately after the last tES session (SMD 0.14, 95% CI -0.12 to 0.41; p = 0.30; n = 417, 11 studies; I2 = 41%) in schizophrenia. There was no significant difference between the two groups in tolerability and dropouts. Evidence of low quality indicates that effects of tES on WM in schizophrenia may appear a few weeks after the last tES session, but not always be present when tested immediately after the last tES session. Further large-scale RCTs with a parallel-group design, sample size estimation and a longer follow-up period are needed.
Collapse
Affiliation(s)
- Yong Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nannan Gu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Cao
- Clinical Neurocognitive Research Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Robert C Smith
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
23
|
Gupta T, Mittal VA. Transcranial direct current stimulation and emotion processing deficits in psychosis and depression. Eur Arch Psychiatry Clin Neurosci 2021; 271:69-84. [PMID: 32488523 PMCID: PMC7704557 DOI: 10.1007/s00406-020-01146-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/23/2020] [Indexed: 01/11/2023]
Abstract
Emotional processing deficits (EPDs) are commonly observed among individuals diagnosed with (1) psychotic disorders (2) and depression. Given that EPDs can impact overall functioning and quality of life, the need to identify effective interventions is critical. To date, our current understanding of treatments for these impairments is limited. However, there is increasing interest in investigating the efficacy of transcranial direct current stimulation (tDCS). This neuromodulation technique releases a weak electrical current through the brain. Given research suggesting promise for using tDCS to improve symptoms and cognition across psychopathology, this approach may be useful for improving EPDs and related symptoms in psychosis and depression. In the current review, we provide an overview of the literature determining the effects of tDCS for EPDs and related symptoms in these groups. Furthermore, we highlight methodological advances and pinpoint potential future directions.
Collapse
Affiliation(s)
- Tina Gupta
- Department of Psychology, Northwestern University, 2029 Sheridan Road, Evanston, IL, 60208, USA.
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, 2029 Sheridan Road, Evanston, IL, 60208, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
24
|
Begemann MJ, Brand BA, Ćurčić-Blake B, Aleman A, Sommer IE. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychol Med 2020; 50:2465-2486. [PMID: 33070785 PMCID: PMC7737055 DOI: 10.1017/s0033291720003670] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/27/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cognition is commonly affected in brain disorders. Non-invasive brain stimulation (NIBS) may have procognitive effects, with high tolerability. This meta-analysis evaluates the efficacy of transcranial magnetic stimulation (TMS) and transcranial Direct Current Stimulation (tDCS) in improving cognition, in schizophrenia, depression, dementia, Parkinson's disease, stroke, traumatic brain injury, and multiple sclerosis. METHODS A PRISMA systematic search was conducted for randomized controlled trials. Hedges' g was used to quantify effect sizes (ES) for changes in cognition after TMS/tDCS v. sham. As different cognitive functions may have unequal susceptibility to TMS/tDCS, we separately evaluated the effects on: attention/vigilance, working memory, executive functioning, processing speed, verbal fluency, verbal learning, and social cognition. RESULTS We included 82 studies (n = 2784). For working memory, both TMS (ES = 0.17, p = 0.015) and tDCS (ES = 0.17, p = 0.021) showed small but significant effects. Age positively moderated the effect of TMS. TDCS was superior to sham for attention/vigilance (ES = 0.20, p = 0.020). These significant effects did not differ across the type of brain disorder. Results were not significant for the other five cognitive domains. CONCLUSIONS Our results revealed that both TMS and tDCS elicit a small trans-diagnostic effect on working memory, tDCS also improved attention/vigilance across diagnoses. Effects on the other domains were not significant. Observed ES were small, yet even slight cognitive improvements may facilitate daily functioning. While NIBS can be a well-tolerated treatment, its effects appear domain specific and should be applied only for realistic indications (i.e. to induce a small improvement in working memory or attention).
Collapse
Affiliation(s)
- Marieke J. Begemann
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bodyl A. Brand
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Branislava Ćurčić-Blake
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - André Aleman
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris E. Sommer
- Department of Biomedical Sciences of Cells & Systems, Section Cognitive Neurosciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Cheng PWC, Louie LLC, Wong YL, Wong SMC, Leung WY, Nitsche MA, Chan WC. The effects of transcranial direct current stimulation (tDCS) on clinical symptoms in schizophrenia: A systematic review and meta-analysis. Asian J Psychiatr 2020; 53:102392. [PMID: 32956993 DOI: 10.1016/j.ajp.2020.102392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This systematic review and meta-analysis aims to examine the effects of transcranial direct current stimulation (tDCS) on clinical symptoms in schizophrenia. METHODS A literature search was performed for articles published in English using the following databases: MEDLINE, EMBASE, PsycINFO, INSPEC, the Cumulative Index to Nursing & Allied Health Literature Plus (CINAHL Plus), AMED, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, EU Clinical Trials Register, and WHO International Clinical Trials Registry Platform, from their inception to October 2019. The primary outcome variables were the clinical symptoms of schizophrenia including positive symptoms, negative symptoms, and auditory hallucinations. RESULTS 16 randomized controlled trials (RCTs) were included in the meta-analysis, with a sample of 326 patients with active and with 310 sham tDCS. Active tDCS was found to be more effective in improving positive symptoms [standardized mean difference (SMD) = 0.17; 95 % confidence interval (CI) 0.001 to 0.33], negative symptoms [SMD = 0.43, 95 % CI 0.11, 0.75] and auditory hallucinations [SMD = 0.36 95 % CI 0.02, 0.70]. Subgroup analyses showed better results in cases of pure diagnosis of schizophrenia, higher frequency and more sessions of stimulation. CONCLUSION tDCS was effective in improving positive symptoms, negative symptoms and auditory hallucination in schizophrenia. It therefore has potential as a safe and well-tolerated adjunctive intervention for schizophrenia.
Collapse
Affiliation(s)
| | | | - Yiu Lung Wong
- Department of Psychiatry, Queen Mary Hospital, Hong Kong
| | | | | | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund University, Germany
| | - Wai Chi Chan
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| |
Collapse
|
26
|
Yu L, Fang X, Chen Y, Wang Y, Wang D, Zhang C. Efficacy of transcranial direct current stimulation in ameliorating negative symptoms and cognitive impairments in schizophrenia: A systematic review and meta-analysis. Schizophr Res 2020; 224:2-10. [PMID: 33129639 DOI: 10.1016/j.schres.2020.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/08/2020] [Accepted: 10/17/2020] [Indexed: 12/29/2022]
Abstract
AIMS Negative symptoms and cognitive impairments in schizophrenia patients are associated with the patients' functional outcomes and quality of life. However, pharmacotherapy has little effect on such symptoms. This study aimed to systematically evaluate the efficacy of transcranial direct current stimulation (tDCS) in ameliorating negative symptoms and cognitive impairments in schizophrenia patients. METHODS A literature search was performed in the PubMed, Embase, PsycINFO and Cochrane Library databases through March 23, 2020. Studies were included if they met all the following criteria: (1) subjects were exclusively patients with schizophrenia, schizoaffective disorder or psychosis, (2) active tDCS and shame stimulation were conducted in two parallel groups, (3) sufficient data were present, and (4) the study design was based on a randomized controlled trial. Two authors conducted the search strategy, publication assessment and data extraction independently, and a third person was consulted when any disagreement emerged. RESULTS A total of 14 studies were included (12 studies included negative symptoms and 7 studies included cognitive impairments). The overall meta-analysis showed no significant difference between active and sham tDCS in ameliorating negative symptoms in schizophrenia patients (SMD: -0.14, 95% CI: -0.33- 0.05). Subgroup analysis including studies with a high stimulation frequency, twice daily, revealed a significant difference in therapeutic effects between active tDCS and sham stimulation (SMD: -0.31, 95% CI: -0.58 to -0.05). With respect to cognitive impairments, there was a trend indicating that active tDCS might improve cognitive impairment (SMD: -0.21, 95% CI: -0.46- 0.04), but the overall meta-analysis failed to obtain statistically significant results. CONCLUSION Our meta-analysis indicates that tDCS is a potential strategy for improving negative symptoms, but the therapeutic benefit for negative symptoms requires a high stimulation frequency (twice a day).
Collapse
Affiliation(s)
- Lingfang Yu
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Biochemical Pharmacology Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xinyu Fang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Chen
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Biochemical Pharmacology Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yewei Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Biochemical Pharmacology Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Dandan Wang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Biochemical Pharmacology Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chen Zhang
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Biochemical Pharmacology Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
27
|
Non-Invasive Brain Stimulation Does Not Improve Working Memory in Schizophrenia: A Meta-Analysis of Randomised Controlled Trials. Neuropsychol Rev 2020; 31:115-138. [PMID: 32918254 DOI: 10.1007/s11065-020-09454-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
Poor working memory functioning is commonly found in schizophrenia. A number of studies have now tested whether non-invasive brain stimulation can improve this aspect of cognitive functioning. This report used meta-analysis to synthesise the results of these studies to examine whether transcranial electrical stimulation (tES) or repetitive transcranial magnetic stimulation (rTMS) can improve working memory in schizophrenia. The studies included in this meta-analysis were sham-controlled, randomised controlled trials that utilised either tES or rTMS to treat working memory problems in schizophrenia. A total of 22 studies were included in the review. Nine studies administered rTMS and 13 administered tES. Meta-analysis revealed that compared to sham/placebo stimulation, neither TMS nor tES significantly improved working memory. This was found when working memory was measured with respect to the accuracy on working memory tasks (TMS studies: Hedges' g = 0.112, CI95: -0.082, 0.305, p = .257; tES studies Hedges' g = 0.080, CI95: -0.117, 0.277, p = .427) or the speed working memory tasks were completed (rTMS studies: Hedges' g = 0.233, CI95: -0.212, 0.678, p = .305; tES studies Hedges' g = -0.016, CI95: -0.204, 0.173, p = .871). For tES studies, meta-regression analysis found that studies with a larger number of stimulation sessions were associated with larger treatment effects. This association was not found for TMS studies. At present, rTMS and tES is not associated with a reliable improvement in working memory for individuals with schizophrenia.
Collapse
|
28
|
Kostova R, Cecere R, Thut G, Uhlhaas PJ. Targeting cognition in schizophrenia through transcranial direct current stimulation: A systematic review and perspective. Schizophr Res 2020; 220:300-310. [PMID: 32204971 DOI: 10.1016/j.schres.2020.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/03/2023]
Abstract
Cognitive deficits are a fundamental feature of schizophrenia for which currently no effective treatments exist. This paper examines the possibility to use transcranial direct current stimulation (tDCS) to target cognitive deficits in schizophrenia as evidence from studies in healthy participants suggests that tDCS may improve cognitive functions and associated neural processes. We carried out a systematic review with the following search terms: 'tDCS', 'electric brain stimulation', 'schizophrenia', 'cognitive', 'cognition' until March 2019. 659 records were identified initially, 612 of which were excluded after abstract screening. The remaining 47 articles were assessed for eligibility based on our criteria and 26 studies were excluded. In addition, we compared several variables, such as online vs. offline-stimulation protocols, stimulation type and intensity on mediating positive vs. negative study outcomes. The majority of studies (n = 21) identified significant behavioural and neural effects on a range of cognitive functions (versus n = 11 with null results), including working memory, attention and social cognition. However, we could not identify tDCS parameters (electrode montage, stimulation protocol, type and intensity) that clearly mediated effects on cognitive deficits. There is preliminary evidence for the possibility that tDCS may improve cognitive deficits in schizophrenia. We discuss the rationale and strength of evidence for using tDCS for targeting cognitive deficits in schizophrenia as well as methodological issues and potential mechanisms of action.
Collapse
Affiliation(s)
- R Kostova
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - R Cecere
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - G Thut
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK; Department of Child and Adolescent Psychiatry, Charite Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
29
|
Duan X, Hu M, Huang X, Dong X, Zong X, He C, Xiao J, Tang J, Chen X, Chen H. Effects of risperidone monotherapy on the default-mode network in antipsychotic-naïve first-episode schizophrenia: Posteromedial cortex heterogeneity and relationship with the symptom improvements. Schizophr Res 2020; 218:201-208. [PMID: 31954611 DOI: 10.1016/j.schres.2020.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/23/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
The default mode network (DMN) has been consistently detected abnormally in schizophrenia. However, the effects of antipsychotics on this network are still under debate, and inconsistent findings may be due to the functional heterogeneity within the DMN, especially in the component regions of the posteromedial cortex (PMC). Here, we conducted a longitudinal research on the resting-state functional connectivity of the PMC subdivisions on 33 treatment-naive first-episode patients with schizophrenia at baseline and after 8 weeks of risperidone treatment through resting-state functional magnetic resonance imaging. At baseline, the patients demonstrated decreased connectivity of the three PMC seeds with several brain regions (target regions) compared with healthy controls. We then tested the effect of antipsychotic treatment on the functional connectivity between the three seeds and the target regions. We found that, one of the three seeds encompassed in PMC, namely, posterior cingulate cortex (PCC), was observed to have increased functional connectivity with the bilateral thalamus and the left lingual gyrus (LG). On the contrary, the functional connectivity between the target regions and the two remaining seeds, namely, the retrosplenial cortex and precuneus, was unaffected by risperidone treatment. Correlation analysis revealed a positive correlation between longitudinal change of PCC-LG connectivity and symptom improvement. These findings indicated the heterogeneity of the PMC in response to antipsychotic treatment and suggested the role of PCC as a treatment biomarker for schizophrenia.
Collapse
Affiliation(s)
- Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, PR China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Maolin Hu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China; Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, PR China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Xia Dong
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, PR China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Xiaofen Zong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China; Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Division of Molecular Imaging and Neuropathology, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Changchun He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, PR China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, PR China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China
| | - Jinsong Tang
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Mental Health Institute of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Changsha, Hunan, PR China
| | - Xiaogang Chen
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Mental Health Institute of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center on Mental Disorders (Xiangya), China National Technology Institute on Mental Disorders, Changsha, Hunan, PR China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, PR China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, PR China.
| |
Collapse
|
30
|
Sreeraj VS, Bose A, Chhabra H, Shivakumar V, Agarwal SM, Narayanaswamy JC, Rao NP, Kesavan M, Varambally S, Venkatasubramanian G. Working memory performance with online-tDCS in schizophrenia: A randomized, double-blinded, sham-controlled, partial cross-over proof-of-concept study. Asian J Psychiatr 2020; 50:101946. [PMID: 32087502 DOI: 10.1016/j.ajp.2020.101946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/08/2020] [Indexed: 12/12/2022]
Abstract
Combining cognitive retraining with transcranial direct current stimulation (tDCS) has been hypothesized to improve cognitive deficits in schizophrenia. The effect of combining a neuropsychological/psychophysiological task with tDCS, called "online-tDCS" for cognitive enhancement in schizophrenia is not rigorously assessed. In this proof-of-concept study, we aimed at evaluating the effect of a single session online-tDCS on working memory(WM) and its transferability to other cognitive functions. Numerical n-back(NNB), digit symbol substitution test(DSST), emotional matching and labelling test(E-MALT), and anti-saccade eye movement beeforefore and after 20 min tDCS (anode: left dorsolateral prefrontal cortex and cathode: left temporoparietal junction) applied during Sternberg's task(WM-task) were assessed. Twenty-three schizophrenia patients with cognitive deficits were randomized to receive either online-tDCS or offline-tDCS (without simultaneous Sternberg's task) sessions. All patients received one session each of active and sham tDCS in a randomized counterbalanced double-blind cross-over design. RMANOVA revealed a significant interaction effect between tDCS type (Online/Offline) x activeness (active/sham) of tDCS; the reaction time during 2-back performance in the NNB test improved in online-sham (F = 5.23, p < 0.038) but not online-active tDCS session. No significant changes were noted in DSST, E-MALT, and anti-saccade performance. Improved performance after online-sham tDCS suggests that performing the Sternberg's task enhanced 2-back performance. The counterintuitive observation was noted with respect to the non-enhancement of WM performance on combining the task to tDCS. Aberrant plasticity in schizophrenia might attain a transitional ceiling that would have resulted in restriction of enhancement on combining the two plasticity modulators. The transferability of improvement to other cognitive domains could not be ascertained.
Collapse
Affiliation(s)
- Vanteemar S Sreeraj
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
| | - Anushree Bose
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Harleen Chhabra
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Venkataram Shivakumar
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Sri Mahavir Agarwal
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Naren P Rao
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Muralidharan Kesavan
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Shivarama Varambally
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Ganesan Venkatasubramanian
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
31
|
Smith RC, Md WL, Wang Y, Jiang J, Wang J, Szabo V, Faull R, Jin H, Davis JM, Li C. Effects of transcranial direct current stimulation on cognition and symptoms in Chinese patients with schizophrenia ✰. Psychiatry Res 2020; 284:112617. [PMID: 31806403 DOI: 10.1016/j.psychres.2019.112617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 01/10/2023]
Abstract
There is preliminary evidence that transcranial direct current stimulation(tDCS) may improve symptoms and cognitive function in schizophrenia, but the generalizability of these results needs further investigation. We present a study of the effects of active vs. sham tDCS on cognition and symptoms in a sample of 45 Chinese patients with schizophrenia who showed significant cognitive deficits and were treated for 10 sessions with active or sham tDCS. Psychiatric symptoms were assessed by PANSS scores, and cognitive symptoms assessed by MATRICS battery and other tests. There were no differences between cognitive or symptom scores between subjects treated with active vs. sham tDCS tested within 1-2 days after the end of the 10th session. However, two weeks later subjects treated with active tDCS showed significantly more improvements on MATRICS Speed of Processing domain. MATRICS Overall Composite and a CogState measure related to accuracy on a 1-back working memory task were improved at two weeks in statistical tests without multiple corrections. The improvement in cognitive test scores 2 weeks after the last tDCS session, suggests longer term effects may be related to changes in neuroplasticity induced by 10 sessions of tDCS. The lack of significant changes in cognition shortly after the completion of 10 tDCS sessions contrasts with our earlier positive findings in U.S. patients with schizophrenia.
Collapse
Affiliation(s)
- Robert C Smith
- Nathan Kline Institute for Psychiatric Research; Department of Psychiatry, NYU Medical School; Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine.
| | - Wei Li Md
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Yiran Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - Jiangling Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | - JiJun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| | | | - Robert Faull
- Psychiatric institute, Department of Psychiatry, Univ. of Illinois College of Medicine, and John Hopkins School of Medicine
| | - Hua Jin
- University of California San Diego, Department of Psychiatry, San Diego, California, and VA San Diego Healthcare System, San Diego, CA, United States of America
| | - John M Davis
- Psychiatric institute, Department of Psychiatry, Univ. of Illinois College of Medicine, and John Hopkins School of Medicine
| | - Chunbo Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
32
|
Effect of multi-session prefrontal transcranial direct current stimulation on cognition in schizophrenia: A systematic review and meta-analysis. Schizophr Res 2020; 216:367-373. [PMID: 31822431 DOI: 10.1016/j.schres.2019.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
Patients with schizophrenia experience cognitive deficits that play a central role in predicting functional outcomes. In this study, we sought to evaluate the effect of transcranial direct current stimulation (tDCS) on cognition using meta-analysis. A search was performed from inception to 8 January 2019, to identify randomized controlled trials assessing the ability of tDCS to ameliorate cognitive deficits in patients with schizophrenia and schizoaffective disorder. The effect size, calculated as the standardized mean difference (Hedge's g), was obtained with a random effect model. We analyzed mean effects on specific cognitive domains that were evaluated in four or more studies. Nine articles were included in the systematic review, which encompassed 270 patients: 133 in the active stimulation group and 137 in the sham stimulation group. Meta-analysis demonstrated a significant mean effect of tDCS on working memory (SMD = 0.49, 95% CI = 0.16 to 0.83), while non-significant results were produced for other domains. These findings were supported by sensitivity analyses indicating that the results would not change in a meaningful way after the exclusion of each single study, and meta-regression analyses verifying the consistent effect irrespective of any moderators. Thus, tDCS may provide a potential option to improve working memory deficits in individuals with schizophrenia. Further trials examining the cognitive benefit of tDCS with medication or other adjunctive treatments are warranted.
Collapse
|
33
|
Chang CC, Kao YC, Chao CY, Tzeng NS, Chang HA. Examining bi-anodal transcranial direct current stimulation (tDCS) over bilateral dorsolateral prefrontal cortex coupled with bilateral extracephalic references as a treatment for negative symptoms in non-acute schizophrenia patients: A randomized, double-blind, sham-controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109715. [PMID: 31362034 DOI: 10.1016/j.pnpbp.2019.109715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
No studies have examined the efficacy of bi-anodal transcranial direct current stimulation (tDCS) over bilateral dorsolateral prefrontal cortex (DLPFC) coupled with bilateral extracephalic references in treating negative symptoms of non-acute schizophrenia patients. This study aimed to investigate the therapeutic effects of the new approach of tDCS on negative symptoms, other schizophrenia symptoms, cognitive deficits and psychosocial functioning in a double-blind, randomized, sham-controlled trial. Patients with non-acute schizophrenia (N = 60) in randomized order received sham treatment or bilaterally provided tDCS (2 mA, twice-daily sessions for five consecutive days) with the anode over the DLPFC and the reference (cathode) over the ipsilateral forearm. The negative symptoms as measured by a dimensional approach of Positive and Negative Syndrome Scale (PANSS) were rapidly reduced by bimodal tDCS relative to sham stimulation (F = 24.86, Cohen's d = 0.661, p = 6.11 × 10-6). The beneficial effect on negative symptoms lasted for up to 3 months. The authors also observed improvement with tDCS of psychosocial functioning as measured by the global score of Personal and Social Performance scale (PSP) and psychopathological symptoms especially for disorganization and cognitive symptoms as measured by the PANSS. No effects were observed on other schizophrenia symptom dimensions and the performance on a series of neurocognitive tests. Our results show promise for bi-anodal tDCS over bilateral DLPFC using bilateral extracephalic references in treating negative symptoms and other selected manifestations of schizophrenia. Further studies with electrophysiological or imaging evaluation help unravel the exact mechanism of action of this novel stimulation parameter of tDCS in schizophrenia patients. (ClinicalTrials.gov ID:NCT03701100).
Collapse
Affiliation(s)
- Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Chao
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
34
|
Kinfe TM, Hurlemann R. [Brain stimulation for the selective treatment of schizophrenia symptom domains : Non-invasive and invasive concepts]. DER NERVENARZT 2019; 90:73-88. [PMID: 30430190 DOI: 10.1007/s00115-018-0640-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Given that one third of patients with schizophrenia (SZ) only show limited response to established treatments, alternative therapeutic strategies such as non-invasive/invasive brain stimulation approaches have emerged as an adjunctive treatment option for distinct SZ symptom domains (e.g. acoustic hallucinations, negative/positive symptoms and cognitive impairment). Taking comparative interventional studies and standardized technical parameters into consideration, current meta-analyses indicate that adjunctive electroconvulsive therapy, repetitive transcranial magnetic stimulation and transcranial direct current stimulation have a positive effect. Invasive deep brain stimulation and MR-guided ultrasound brain ablation procedures represent treatment modalities that are currently being clinically tested. Complementary pre-interventional screening approaches (e.g. electrophysiology, neuroimaging and molecular inflammatory profiling) have been recommended in order to identify symptom-tailored predictive measures for diagnosis and treatment.
Collapse
Affiliation(s)
- Thomas M Kinfe
- Abteilung für Medizinische Psychologie, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Deutschland.
| | - René Hurlemann
- Abteilung für Medizinische Psychologie, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Deutschland
| |
Collapse
|
35
|
Chang CC, Kao YC, Chao CY, Chang HA. Enhancement of cognitive insight and higher-order neurocognitive function by fronto-temporal transcranial direct current stimulation (tDCS) in patients with schizophrenia. Schizophr Res 2019; 208:430-438. [PMID: 30635256 DOI: 10.1016/j.schres.2018.12.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
Abstract
No studies have examined the effects of fronto-temporal transcranial direct current stimulation (tDCS) on cognitive insight and neurocognitive function in schizophrenia patients and the dynamic interplay between tDCS-induced changes in these two outcomes. In this double-blind, randomized, sham-controlled study, we investigated the effects of fronto-temporal tDCS [anode corresponding to left dorsolateral prefrontal cortex and cathode to left temporo-parietal junction; 2-mA, twice-daily sessions for 5 days] on illness severity, psychosocial functioning, cognitive insight and neurocognitive function in schizophrenia patients (N = 60). The authors observed significant trends that tDCS ameliorated the severity of total and general psychopathology as measured by the Positive and Negative Syndrome Scale. No significant effects were observed for other psychopathological symptoms and psychosocial functioning. Cognitive insight as measured by the Beck Cognitive Insight Scale (BCIS) was rapidly enhanced by 10-session tDCS (F = 10.80, Cohen's d = 0.44, p = 0.002) but the beneficial effect became borderline significant 1 month after stimulation. A trend-level improvement with tDCS of planning ability (F = 6.40, Cohen's d = 0.339, p = 0.014) as measured by the accuracy in Tower of London task was also observed. In the active tDCS group, the change in cognitive insight from baseline to immediately after tDCS assessment was positively correlated with that in planning ability (r = 0.46, p = 0.015), which was independent of the corresponding change in illness severity. The promising results regarding the fast-acting beneficial effects of tDCS on cognitive insight and planning ability in schizophrenia require confirmation in future replication studies.
Collapse
Affiliation(s)
- Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Che-Yi Chao
- Department of Psychiatry, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|