1
|
Mohammadi P, Nadri S, Abdanipour A, Mortazavi Y. Microchip encapsulation and microRNA-7 overexpression of trabecular meshwork mesenchymal stem/stromal cells improve motor function after spinal cord injury. J Biomed Mater Res A 2023; 111:1482-1494. [PMID: 37042544 DOI: 10.1002/jbm.a.37549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
Manipulation of stem cells and microencapsulation through microfluidic chips has shown more promising results in treating complex conditions, such as spinal cord injury (SCI), than traditional treatments. This study aimed to investigate the potency of neural differentiation and its therapeutic role in SCI animal model of trabecular meshwork mesenchymal stem/stromal cells (TMMSCs) via miR-7 overexpression and microchip-encapsulated. TMMSCs are transduced with miR-7 via a lentiviral vector (TMMSCs-miR-7[+]) and encapsulated in alginate-reduced graphene oxide (alginate-rGO) hydrogel via a microfluidic chip. Neuronal differentiation of transduced cells in hydrogel (3D) and tissue cultures plate (2D) was assessed by expressing specific mRNAs and proteins. Further evaluation is being carried out through 3D and 2D TMMSCs-miR-7(+ and -) transplantation into the rat contusion SCI model. TMMSCs-miR-7(+) encapsulated in the microfluidic chip (miR-7-3D) increased nestin, β-tubulin III, and MAP-2 expression compared with 2D culture. Moreover, miR-7-3D could improve locomotor behavior in contusion SCI rats, decrease cavity size, and increase myelination. Our results revealed that miR-7 and alginate-rGO hydrogel were involved in the neuronal differentiation of TMMSCs in a time-dependent manner. In addition, the microfluidic-encapsulated miR-7 overexpression TMMSCs represented a better survival and integration of the transplanted cells and the repair of SCI. Collectively, the combination of miR-7 overexpression and encapsulation of TMMSCs in hydrogels may represent a promising new treatment for SCI.
Collapse
Affiliation(s)
- Parvin Mohammadi
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Alireza Abdanipour
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci 2023; 24:ijms24032523. [PMID: 36768843 PMCID: PMC9917335 DOI: 10.3390/ijms24032523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tng J. W. Teddy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore 639798, Singapore
| | - Mok Jung Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Micaela Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- National Neuroscience Institute, Singapore 308433, Singapore
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
3
|
Xie X, Zhou X, Liu T, Zhong Z, Zhou Q, Iqbal W, Xie Q, Wei C, Zhang X, Chang TMS, Sun P. Direct Differentiation of Human Embryonic Stem Cells to 3D Functional Hepatocyte-like Cells in Alginate Microencapsulation Sphere. Cells 2022; 11:3134. [PMID: 36231094 PMCID: PMC9562699 DOI: 10.3390/cells11193134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The lack of a stable source of hepatocytes is one of major limitations in hepatocyte transplantation and clinical applications of a bioartificial liver. Human embryonic stem cells (hESCs) with a high degree of self-renewal and totipotency are a potentially limitless source of a variety of cell lineages, including hepatocytes. Many techniques have been developed for effective differentiation of hESCs into functional hepatocyte-like cells. However, the application of hESC-derived hepatocyte-like cells (hESC-Heps) in the clinic has been constrained by the low yield of fully differentiated cells, small-scale culture, difficulties in harvesting, and immunologic graft rejection. To resolve these shortcomings, we developed a novel 3D differentiation system involving alginate-microencapsulated spheres to improve current hepatic differentiation, providing ready-to-use hESC-Heps. METHODS In this study, we used alginate microencapsulation technology to differentiate human embryonic stem cells into hepatocyte-like cells (hESC-Heps). Hepatic markers of hESC-Heps were examined by qPCR and Western blotting, and hepatic functions of hESC-Heps were evaluated by indocyanine-green uptake and release, and ammonia removal. RESULTS The maturity and hepatic functions of the hESC-Heps derived from this 3D system were better than those derived from 2D culture. Hepatocyte-enriched genes, such as HNF4α, AFP, and ALB, were expressed at higher levels in 3D hESC-Heps than in 2D hESC-Heps. 3D hESC-Heps could metabolize indocyanine green and had better capacity to scavenge ammonia. In addition, the 3D sodium alginate hydrogel microspheres could block viral entry into the microspheres, and thus protect hESC-Heps in 3D microspheres from viral infection. CONCLUSION We developed a novel 3D differentiation system for differentiating hESCs into hepatocyte-like cells by using alginate microcapsules.
Collapse
Affiliation(s)
- Xiaoling Xie
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- Guangdong Chaozhou Health Vocational College, Chaozhou 521000, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Tingdang Liu
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Zhiqian Zhong
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Qi Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Waqas Iqbal
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Qingdong Xie
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Chiju Wei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xin Zhang
- Laboratory of Molecular Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Thomas Ming Swi Chang
- Artificial Cells & Organs Research Centre, Departments of Physiology, Medicine & Biomedical Engineering, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Sensitive detection of electrophysiology and dopamine vesicular exocytosis of hESC-Derived dopaminergic neurons using multifunctional microelectrode array. Biosens Bioelectron 2022; 209:114263. [DOI: 10.1016/j.bios.2022.114263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022]
|
5
|
Eleftheriadou D, Evans RE, Atkinson E, Abdalla A, Gavins FKH, Boyd AS, Williams GR, Knowles JC, Roberton VH, Phillips JB. An alginate-based encapsulation system for delivery of therapeutic cells to the CNS. RSC Adv 2022; 12:4005-4015. [PMID: 35425456 PMCID: PMC8981497 DOI: 10.1039/d1ra08563h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Treatment options for neurodegenerative conditions such as Parkinson's disease have included the delivery of cells which release dopamine or neurotrophic factors to the brain. Here, we report the development of a novel approach for protecting cells after implantation into the central nervous system (CNS), by developing dual-layer alginate beads that encapsulate therapeutic cells and release an immunomodulatory compound in a sustained manner. An optimal alginate formulation was selected with a view to providing a sustained physical barrier between engrafted cells and host tissue, enabling exchange of small molecules while blocking components of the host immune response. In addition, a potent immunosuppressant, FK506, was incorporated into the outer layer of alginate beads using electrosprayed poly-ε-caprolactone core–shell nanoparticles with prolonged release profiles. The stiffness, porosity, stability and ability of the alginate beads to support and protect encapsulated SH-SY5Y cells was demonstrated, and the release profile of FK506 and its effect on T-cell proliferation in vitro was characterized. Collectively, our results indicate this multi-layer encapsulation technology has the potential to be suitable for use in CNS cell delivery, to protect implanted cells from host immune responses whilst providing permeability to nutrients and released therapeutic molecules. Novel composite cell encapsulation system: dual-layer, micro-scale beads maintain cell survival while releasing immunomodulatory FK506 in a sustained manner. This biotechnology platform could be applicable for treatment of CNS and other disorders.![]()
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Rachael E Evans
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Emily Atkinson
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Ahmed Abdalla
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Francesca K H Gavins
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Ashleigh S Boyd
- UCL Institute of Immunity and Transplantation, Royal Free Hospital London UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Jonathan C Knowles
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute London UK
| | - Victoria H Roberton
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - James B Phillips
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| |
Collapse
|
6
|
Ghila L, Legøy TA, Chera S. A Method for Encapsulation and Transplantation into Diabetic Mice of Human Induced Pluripotent Stem Cells (hiPSC)-Derived Pancreatic Progenitors. Methods Mol Biol 2022; 2454:327-349. [PMID: 33786775 DOI: 10.1007/7651_2021_356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pancreatic islet endocrine cells generated from patient-derived induced pluripotent stem cells represent a great strategy for both disease modeling and regenerative medicine. Nevertheless, these cells inherently miss the effects of the intricate network of systemic signals characterizing the living organisms. Xenotransplantation of in vitro differentiating cells into murine hosts substantially compensates for this drawback.Here we describe our transplantation strategy of encapsulated differentiating pancreatic progenitors into diabetic immunosuppressed (NSG) overtly diabetic mice generated by the total ablation of insulin-producing cells following diphtheria toxin administration. We will detail the differentiation protocol employed, the alginate encapsulation procedure, and the xenotransplantation steps required for a successful and reproducible experiment.
Collapse
Affiliation(s)
- Luiza Ghila
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Thomas Aga Legøy
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, Faculty of Medicine, Center for Diabetes Research, University of Bergen, Bergen, Norway.
| |
Collapse
|
7
|
Gilmozzi V, Gentile G, Riekschnitz DA, Von Troyer M, Lavdas AA, Kerschbamer E, Weichenberger CX, Rosato-Siri MD, Casarosa S, Conti L, Pramstaller PP, Hicks AA, Pichler I, Zanon A. Generation of hiPSC-Derived Functional Dopaminergic Neurons in Alginate-Based 3D Culture. Front Cell Dev Biol 2021; 9:708389. [PMID: 34409038 PMCID: PMC8365765 DOI: 10.3389/fcell.2021.708389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent an unlimited cell source for the generation of patient-specific dopaminergic (DA) neurons, overcoming the hurdle of restricted accessibility to disease-affected tissue for mechanistic studies on Parkinson's disease (PD). However, the complexity of the human brain is not fully recapitulated by existing monolayer culture methods. Neurons differentiated in a three dimensional (3D) in vitro culture system might better mimic the in vivo cellular environment for basic mechanistic studies and represent better predictors of drug responses in vivo. In this work we established a new in vitro cell culture system based on the microencapsulation of hiPSCs in small alginate/fibronectin beads and their differentiation to DA neurons. Optimization of hydrogel matrix concentrations and composition allowed a high viability of embedded hiPSCs. Neural differentiation competence and efficiency of DA neuronal generation were increased in the 3D cultures compared to a conventional 2D culture methodology. Additionally, electrophysiological parameters and metabolic switching profile confirmed increased functionality and an anticipated metabolic resetting of neurons grown in alginate scaffolds with respect to their 2D counterpart neurons. We also report long-term maintenance of neuronal cultures and preservation of the mature functional properties. Furthermore, our findings indicate that our 3D model system can recapitulate mitochondrial superoxide production as an important mitochondrial phenotype observed in neurons derived from PD patients, and that this phenotype might be detectable earlier during neuronal differentiation. Taken together, these results indicate that our alginate-based 3D culture system offers an advantageous strategy for the reliable and rapid derivation of mature and functional DA neurons from hiPSCs.
Collapse
Affiliation(s)
- Valentina Gilmozzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giovanna Gentile
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Diana A. Riekschnitz
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Michael Von Troyer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alexandros A. Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Emanuela Kerschbamer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Christian X. Weichenberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Marcelo D. Rosato-Siri
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Simona Casarosa
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
8
|
Dumbleton J, Shamul JG, Jiang B, Agarwal P, Huang H, Jia X, He X. Oxidation and RGD Modification Affect the Early Neural Differentiation of Murine Embryonic Stem Cells Cultured in Core-Shell Alginate Hydrogel Microcapsules. Cells Tissues Organs 2021; 211:294-303. [PMID: 34038907 PMCID: PMC8617071 DOI: 10.1159/000514580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
Directed neural differentiation of embryonic stem cells (ESCs) has been studied extensively to improve the treatment of neurodegenerative disorders. This can be done through stromal-cell derived inducing activity (SDIA), by culturing ESCs directly on top of a layer of feeder stromal cells. However, the stem cells usually become mixed with the feeder cells during the differentiation process, making it difficult to obtain a pure population of the differentiated cells for further use. To address this issue, a non-planar microfluidic device is used here to encapsulate murine ESCs (mESCs) in the 3D liquid core of microcapsules with an alginate hydrogel shell of different sizes for early neural differentiation through SDIA, by culturing mESC-laden microcapsules over a feeder layer of PA6 cells. Furthermore, the alginate hydrogel shell of the microcapsules is modified via oxidation or RGD peptide conjugation to examine the mechanical and chemical effects on neural differentiation of the encapsulated mESC aggregates. A higher expression of Nestin is observed in the aggregates encapsulated in small (∼300 μm) microcapsules and cultured over the PA6 cell feeder layer. Furthermore, the modification of the alginate with RGD facilitates early neurite extension within the microcapsules. This study demonstrates that the presence of the RGD peptide, the SDIA effect of the PA6 cells, and the absence of leukemia inhibition factor from the medium can lead to the early differentiation of mESCs with extensive neurites within the 3D microenvironment of the small microcapsules. This is the first study to investigate the effects of cell adhesion and degradation of the encapsulation materials for directed neural differentiation of mESCs. The simple modifications (i.e., oxidation and RGD incorporation) of the miniaturized 3D environment for improved early neural differentiation of mESCs may potentially enhance further downstream differentiation of the mESCs into more specialized neurons for therapeutic use and drug screening.
Collapse
Affiliation(s)
- Jenna Dumbleton
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 (USA)
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Pranay Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 (USA)
| | - Haishui Huang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 (USA)
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210 (USA)
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
9
|
Fannon OM, Bithell A, Whalley BJ, Delivopoulos E. A Fiber Alginate Co-culture Platform for the Differentiation of mESC and Modeling of the Neural Tube. Front Neurosci 2021; 14:524346. [PMID: 33510605 PMCID: PMC7835723 DOI: 10.3389/fnins.2020.524346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
Alginate hydrogels are a commonly used substrate for in vitro 3D cell culture. These naturally derived biomaterials are highly tunable, biocompatible, and can be designed to mimic the elastic modulus of the adult brain at 1% w/v solution. Recent studies show that the molecular weight of the alginate can affect cell viability and differentiation. The relationship between the molecular weight, viscosity and ratio of G:M monomers of alginate hydrogels is complex, and the balance between these factors must be carefully considered when deciding on a suitable alginate hydrogel for stem cell research. This study investigates the formation of embryoid bodies (EB) from mouse embryonic stem cells, using low molecular weight (LMW) and high molecular weight (HMW) alginates. The cells are differentiated using a retinoic acid-based protocol, and the resulting aggregates are sectioned and stained for the presence of stem cells and the three germ layers (endoderm, mesoderm, and ectoderm). The results highlight that aggregates within LMW and HMW alginate are true EBs, as demonstrated by positive staining for markers of the three germ layers. Using tubular alginate scaffolds, formed with an adapted gradient maker protocol, we also propose a novel 3D platform for the patterned differentiation of mESCs, based on gradients of retinoic acid produced in situ by lateral motor column (LMC) motor neurons. The end product of our platform will be of great interest as it can be further developed into a powerful model of neural tube development.
Collapse
Affiliation(s)
- Orla M Fannon
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Angela Bithell
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
10
|
Shafiee A, Kehtari M, Zarei Z, Soleimani M, Varshochian R, Ahmadi A, Atyabi F, Dinarvand R. An in situ hydrogel-forming scaffold loaded by PLGA microspheres containing carbon nanotube as a suitable niche for neural differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111739. [PMID: 33545882 DOI: 10.1016/j.msec.2020.111739] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
The cell-extracellular matrix (ECM) interactions are known to have a strong impact on cell behaviors in neural tissues. Due to complex physiology system and limited regenerative capacity of nervous system, neural tissue engineering has attracted attention as a promising strategy. In this study, we designed a hydrogel loaded by poly (lactic-co-glycolic acid) (PLGA) microspheres containing carbon nanotubes (CNT) and the biochemical differentiation factors, as a scaffold, in order to replicate the neural niche for stem cell growth (and/or differentiation). Different formulations from Hyaluronic acid (H), Poloxamer (P), Ethoxy-silane-capped poloxamer (PE), and cross-linked Alginate (Alg) were utilized as an in situ gel structure matrix to mirror the mechanical properties of the ECM of CNS. Subsequently, conductivity, surface morphology, size of microspheres, and CNT dispersion in microsphere were measured using two probes electrical conductometer, scanning electron microscopy (SEM), dynamic light scattering (DLS), and Raman spectroscopy, respectively. According to SEM and fluorescent microscopy images, CNTs increased the porosity of polymeric structure, which, in turn, facilitated the adhesion of stem cells on the surface of microspheres compared with control. Microstructure and rheological behaviors of different gel compositions were investigated using SEM and parallel-plate oscillatory rheometer, respectively. The MTT assay showed the toxicity profile of hydrogels was appropriate for cell transplantation. The confocal images illustrated the 3D platform of P15%H10% and P20%H5% gel formulations containing the PLGA-CNT microspheres, which allows the proliferation of neural stem cells (NSCs) derived from MSC. The results of real-time PCR and immunocytochemistry showed neuronal differentiation capacity of cultured NSCs derived from MSC in the alginate gel that contained PLGA-CNT microspheres as well as other control groups. The dispersion of the CNT-PLGA microspheres, covered by NSCs, into alginate gel in the presence of induction factors was found to notably enhance the expression of Sox2-SYP and β-Tubulin III neuronal markers.
Collapse
Affiliation(s)
- Akram Shafiee
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mousa Kehtari
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Zeinab Zarei
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medicine, Tarbiat Modaress University, Tehran, Iran
| | - Reyhaneh Varshochian
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Qiu B, Bessler N, Figler K, Buchholz M, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910250. [PMID: 34566552 PMCID: PMC8444304 DOI: 10.1002/adfm.201910250] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.
Collapse
Affiliation(s)
- Boning Qiu
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Nils Bessler
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Kianti Figler
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Maj‐Britt Buchholz
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Anne C. Rios
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Riccardo Levato
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Massimiliano Caiazzo
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”Via Pansini 5Naples80131Italy
| |
Collapse
|
12
|
Legøy TA, Vethe H, Abadpour S, Strand BL, Scholz H, Paulo JA, Ræder H, Ghila L, Chera S. Encapsulation boosts islet-cell signature in differentiating human induced pluripotent stem cells via integrin signalling. Sci Rep 2020; 10:414. [PMID: 31942009 PMCID: PMC6962451 DOI: 10.1038/s41598-019-57305-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
Cell replacement therapies hold great therapeutic potential. Nevertheless, our knowledge of the mechanisms governing the developmental processes is limited, impeding the quality of differentiation protocols. Generating insulin-expressing cells in vitro is no exception, with the guided series of differentiation events producing heterogeneous cell populations that display mixed pancreatic islet phenotypes and immaturity. The achievement of terminal differentiation ultimately requires the in vivo transplantation of, usually, encapsulated cells. Here we show the impact of cell confinement on the pancreatic islet signature during the guided differentiation of alginate encapsulated human induced pluripotent stem cells (hiPSCs). Our results show that encapsulation improves differentiation by significantly reshaping the proteome landscape of the cells towards an islet-like signature. Pathway analysis is suggestive of integrins transducing the encapsulation effect into intracellular signalling cascades promoting differentiation. These analyses provide a molecular framework for understanding the confinement effects on hiPSCs differentiation while confirming its importance for this process.
Collapse
Affiliation(s)
- Thomas Aga Legøy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Shadab Abadpour
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Berit L Strand
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanne Scholz
- Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway.,Institute for Surgical Research and Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
13
|
Liu Y, Wu C, Lu H, Yang Y, Li W, Shen Y. Programmable higher-order biofabrication of self-locking microencapsulation. Biofabrication 2019; 11:035019. [DOI: 10.1088/1758-5090/aafd14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Gao Y, Jin X. Characterizing the degradation behavior of calcium alginate fibers wound dressings fabricated by needle-punching process. J Appl Polym Sci 2018. [DOI: 10.1002/app.46670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yingjun Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| | - Xiangyu Jin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| |
Collapse
|
15
|
Qiao S, Liu Y, Han F, Guo M, Hou X, Ye K, Deng S, Shen Y, Zhao Y, Wei H, Song B, Yao L, Tian W. An Intelligent Neural Stem Cell Delivery System for Neurodegenerative Diseases Treatment. Adv Healthc Mater 2018; 7:e1800080. [PMID: 29719134 DOI: 10.1002/adhm.201800080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/05/2018] [Indexed: 12/30/2022]
Abstract
Transplanted stem cells constitute a new therapeutic strategy for the treatment of neurological disorders. Emerging evidence indicates that a negative microenvironment, particularly one characterized by the acute inflammation/immune response caused by physical injuries or transplanted stem cells, severely impacts the survival of transplanted stem cells. In this study, to avoid the influence of the increased inflammation following physical injuries, an intelligent, double-layer, alginate hydrogel system is designed. This system fosters the matrix metalloproeinases (MMP) secreted by transplanted stem cell reactions with MMP peptide grafted on the inner layer and destroys the structure of the inner hydrogel layer during the inflammatory storm. Meanwhile, the optimum concentration of the arginine-glycine-aspartate (RGD) peptide is also immobilized to the inner hydrogels to obtain more stem cells before arriving to the outer hydrogel layer. It is found that blocking Cripto-1, which promotes embryonic stem cell differentiation to dopamine neurons, also accelerates this process in neural stem cells. More interesting is the fact that neural stem cell differentiation can be conducted in astrocyte-differentiation medium without other treatments. In addition, the system can be adjusted according to the different parameters of transplanted stem cells and can expand on the clinical application of stem cells in the treatment of this neurological disorder.
Collapse
Affiliation(s)
- Shupei Qiao
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Yi Liu
- Key Laboratory of Bio-Medical Diagnostics; Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou 215163 P. R. China
| | - Fengtong Han
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Mian Guo
- Department of Neurosurgery; The Second Affiliated Hospital of Harbin Medical University; Harbin 150080 P. R. China
| | - Xiaolu Hou
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Kangruo Ye
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Shuai Deng
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Yijun Shen
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Yufang Zhao
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| | - Haiying Wei
- Department of Ophthalmology; The First Affiliated Hospital of Harbin Medical University; Harbin 150080 P. R. China
| | - Bing Song
- Cardiff Institute of Tissue Engineering and Repair; School of Dentistry; College of Biomedical and Life Sciences; Cardiff University; CF14 4XY Cardiff UK
| | - Lifen Yao
- Department of Neurology; The First Affiliated Hospital of Harbin Medical University; Harbin 150080 P. R. China
| | - Weiming Tian
- School of Life Science and Technology; Harbin Institute of Technology; Harbin 150080 P. R. China
| |
Collapse
|
16
|
Armentano I, Puglia D, Luzi F, Arciola CR, Morena F, Martino S, Torre L. Nanocomposites Based on Biodegradable Polymers. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E795. [PMID: 29762482 PMCID: PMC5978172 DOI: 10.3390/ma11050795] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
Abstract
In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018) are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes). Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors' contribution to the state of the art in the field of biodegradable polymeric nanocomposites.
Collapse
Affiliation(s)
- Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University, 01100 Viterbo, Italy.
| | - Debora Puglia
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| | - Francesca Luzi
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy.
| | - Luigi Torre
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| |
Collapse
|
17
|
Immunoisolation of stem cells by simultaneous encapsulation and PEGylation. Prog Biomater 2018; 7:55-60. [PMID: 29460181 PMCID: PMC5823811 DOI: 10.1007/s40204-018-0084-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/06/2018] [Indexed: 12/19/2022] Open
Abstract
Today, cell therapy is known as an important tool in the treatment of chronic diseases where cells lose their normal function. Immunoisolation systems using microencapsulation or PEGylation have been developed to evade the problem of rejection by the immune system. The aim of the present study was to investigate a combination of microencapsulation and PEGylation methods in coating mouse embryonic stem cells (mESCs) to determine its effect in reducing the host’s immune response. Therefore, methoxy polyethylene glycol (mPEG) binding on alginate–trimethyl chitosan (TMC) microcapsules was investigated using FTIR. Furthermore, survival of the microencapsulated mESCs was confirmed using AO/PI staining and MTT assays. In addition, the effect of mESCs co-cultured with foreign lymphocytes was evaluated. Overall, interleukin-2 (IL-2) secretions as a response of the immune system revealed that mESCs microencapsulation in alginate–TMC–PEG, reduced the immune system response. The results suggested that IL-2 secretion was reduced to 62% at seventh day.
Collapse
|
18
|
Sakai S, Kamei H, Mori T, Hotta T, Ohi H, Nakahata M, Taya M. Visible Light-Induced Hydrogelation of an Alginate Derivative and Application to Stereolithographic Bioprinting Using a Visible Light Projector and Acid Red. Biomacromolecules 2018; 19:672-679. [PMID: 29393630 DOI: 10.1021/acs.biomac.7b01827] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Visible light-induced hydrogelation is attractive for various biomedical applications. In this study, hydrogels of alginate with phenolic hydroxyl groups (Alg-Ph) were obtained by irradiating a solution containing the polymer, ruthenium II trisbipyridyl chloride ([Ru(bpy)3]2+) and sodium persulfate (SPS), with visible light. The hydrogelation kinetics and the mechanical properties of the resultant hydrogels were tunable by controlling the intensity of the light and the concentrations of [Ru(bpy)3]2+ and SPS. With appropriate concentrations of [Ru(bpy)3]2+ and SPS, the hydrogel could be obtained following approximately 10 s of irradiation using a normal desktop lamp. The hydrogelation process and the resultant hydrogel were cytocompatible; mouse fibroblast cells enclosed in the Alg-Ph hydrogel maintained more than 90% viability for 1 week. The solution containing Alg-Ph, [Ru(bpy)3]2+ and SPS was useful as a bioink for stereolithographic bioprinting. Cell-laden hydrogel constructs could be printed using the bioprinting system equipped with a visible light projector without a significant decrease in cell viability in the presence of photoabsorbent Acid Red 18. The hydrogel construct including a perfusable helical lumen of 1 mm in diameter could be fabricated using the printing system. These results demonstrate the significant potential of this visible light-induced hydrogelation system and the stereolithographic bioprinting using the hydrogelation system for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Toko Mori
- Shitennoji Senior High School , 1-11-73 Shitennoji, Tennoji, Osaka 543-0051, Japan.,JST Global Science Campus , 4-1-8 Honmachi, Kawaguchi, Saitama 332-0013, Japan
| | | | | | | | | |
Collapse
|
19
|
Buzanska L, Zychowicz M, Kinsner-Ovaskainen A. Bioengineering of the Human Neural Stem Cell Niche: A Regulatory Environment for Cell Fate and Potential Target for Neurotoxicity. Results Probl Cell Differ 2018; 66:207-230. [PMID: 30209661 DOI: 10.1007/978-3-319-93485-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human neural stem/progenitor cells of the developing and adult organisms are surrounded by the microenvironment, so-called neurogenic niche. The developmental processes of stem cells, such as survival, proliferation, differentiation, and fate decisions, are controlled by the mutual interactions between cells and the niche components. Such interactions are tissue specific and determined by the biochemical and biophysical properties of the niche constituencies and the presence of other cell types. This dynamic approach of the stem cell niche, when translated into in vitro settings, requires building up "biomimetic" microenvironments resembling natural conditions, where the stem/progenitor cell is provided with diverse extracellular signals exerted by soluble and structural cues, mimicking those found in vivo. The neural stem cell niche is characterized by a unique composition of soluble components including neurotransmitters and trophic factors as well as insoluble extracellular matrix proteins and proteoglycans. Biotechnological innovations provide tools such as a new generation of tunable biomaterials capable of releasing specific signals in a spatially and temporally controlled manner, thus creating in vitro nature-like conditions and, when combined with stem cell-derived tissue specific progenitors, producing differentiated neuronal tissue structures. In addition, substantial progress has been made on the protocols to obtain stem cell-derived cell aggregates such as neurospheres and self-assembled organoids.In this chapter, we have assessed the application of bioengineered human neural stem cell microenvironments to produce in vitro models of different levels of biological complexity for the efficient control of stem cell fate. Examples of biomaterial-supported two-dimensional and three-dimensional (2D and 3D) complex culture systems that provide artificial neural stem cell niches are discussed in the context of their application for basic research and neurotoxicity testing.
Collapse
Affiliation(s)
- Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| | - Marzena Zychowicz
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kinsner-Ovaskainen
- European Commission, Joint Research Centre, Directorate for Health Consumers and Reference Materials, Ispra, Italy
| |
Collapse
|
20
|
Sakai S, Ueda K, Gantumur E, Taya M, Nakamura M. Drop-On-Drop Multimaterial 3D Bioprinting Realized by Peroxidase-Mediated Cross-Linking. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700534] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/03/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Shinji Sakai
- Department of Materials Science and Engineering; Graduate School of Engineering Science; Osaka University; Osaka 560-8531 Japan
| | - Kohei Ueda
- Department of Materials Science and Engineering; Graduate School of Engineering Science; Osaka University; Osaka 560-8531 Japan
| | - Enkhtuul Gantumur
- Department of Materials Science and Engineering; Graduate School of Engineering Science; Osaka University; Osaka 560-8531 Japan
| | - Masahito Taya
- Department of Materials Science and Engineering; Graduate School of Engineering Science; Osaka University; Osaka 560-8531 Japan
| | - Makoto Nakamura
- Graduate School of Science and Technology for Research; University of Toyama; Toyama 930-8555 Japan
| |
Collapse
|
21
|
Kang P, Kumar S, Schaffer D. Novel biomaterials to study neural stem cell mechanobiology and improve cell-replacement therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:13-20. [PMID: 29399646 PMCID: PMC5791915 DOI: 10.1016/j.cobme.2017.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural stem cells (NSCs) are a valuable cell source for tissue engineering, regenerative medicine, disease modeling, and drug screening applications. Analogous to other stem cells, NSCs are tightly regulated by their microenvironmental niche, and prior work utilizing NSCs as a model system with engineered biomaterials has offered valuable insights into how biophysical inputs can regulate stem cell proliferation, differentiation, and maturation. In this review, we highlight recent exciting studies with innovative material platforms that enable narrow stiffness gradients, mechanical stretching, temporal stiffness switching, and three-dimensional culture to study NSCs. These studies have significantly advanced our knowledge of how stem cells respond to an array of different biophysical inputs and the underlying mechanosensitive mechanisms. In addition, we discuss efforts to utilize engineered material scaffolds to improve NSC-based translational efforts and the importance of mechanobiology in tissue engineering applications.
Collapse
Affiliation(s)
- Phillip Kang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory Physical Biosciences Division, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - David Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
22
|
Lopez-Mendez TB, Santos-Vizcaino E, Blanco FJ, Pedraz JL, Hernandez RM, Orive G. Improved control over MSCs behavior within 3D matrices by using different cell loads in both in vitro and in vivo environments. Int J Pharm 2017; 533:62-72. [DOI: 10.1016/j.ijpharm.2017.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022]
|
23
|
Adil MM, Rodrigues GMC, Kulkarni RU, Rao AT, Chernavsky NE, Miller EW, Schaffer DV. Efficient generation of hPSC-derived midbrain dopaminergic neurons in a fully defined, scalable, 3D biomaterial platform. Sci Rep 2017; 7:40573. [PMID: 28091566 PMCID: PMC5238378 DOI: 10.1038/srep40573] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
Pluripotent stem cells (PSCs) have major potential as an unlimited source of functional cells for many biomedical applications; however, the development of cell manufacturing systems to enable this promise faces many challenges. For example, there have been major recent advances in the generation of midbrain dopaminergic (mDA) neurons from stem cells for Parkinson's Disease (PD) therapy; however, production of these cells typically involves undefined components and difficult to scale 2D culture formats. Here, we used a fully defined, 3D, thermoresponsive biomaterial platform to rapidly generate large numbers of action-potential firing mDA neurons after 25 days of differentiation (~40% tyrosine hydroxylase (TH) positive, maturing into 25% cells exhibiting mDA neuron-like spiking behavior). Importantly, mDA neurons generated in 3D exhibited a 30-fold increase in viability upon implantation into rat striatum compared to neurons generated on 2D, consistent with the elevated expression of survival markers FOXA2 and EN1 in 3D. A defined, scalable, and resource-efficient cell culture platform can thus rapidly generate high quality differentiated cells, both neurons and potentially other cell types, with strong potential to accelerate both basic and translational research.
Collapse
Affiliation(s)
- Maroof M. Adil
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Gonçalo M. C. Rodrigues
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | | | - Antara T. Rao
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Nicole E. Chernavsky
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Evan W. Miller
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
24
|
Richardson T, Barner S, Candiello J, Kumta PN, Banerjee I. Capsule stiffness regulates the efficiency of pancreatic differentiation of human embryonic stem cells. Acta Biomater 2016; 35:153-65. [PMID: 26911881 DOI: 10.1016/j.actbio.2016.02.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/24/2015] [Accepted: 02/17/2016] [Indexed: 12/14/2022]
Abstract
Encapsulation of donor islets using a hydrogel material is a well-studied strategy for islet transplantation, which protects donor islets from the host immune response. Replacement of donor islets by human embryonic stem cell (hESC) derived islets will also require a means of immune-isolating hESCs by encapsulation. However, a critical consideration of hESC differentiation is the effect of surrounding biophysical environment, in this case capsule biophysical properties, on differentiation. The objective of this study, thus, was to evaluate the effect of capsule properties on growth, viability, and differentiation of encapsulated hESCs throughout pancreatic induction. It was observed that even in the presence of soluble chemical cues for pancreatic induction, substrate properties can significantly modulate pancreatic differentiation, hence necessitating careful tuning of capsule properties. Capsules in the range of 4-7kPa supported cell growth and viability, whereas capsules of higher stiffness suppressed cell growth. While an increase in capsule stiffness enhanced differentiation at the intermediate definitive endoderm (DE) stage, increased stiffness strongly suppressed pancreatic progenitor (PP) induction. Signaling pathway analysis indicated an increase in pSMAD/pAKT levels with substrate stiffness likely the cause of enhancement of DE differentiation. In contrast, sonic hedgehog inhibition was more efficient under softer gel conditions, which is necessary for successful PP differentiation. STATEMENT OF SIGNIFICANCE Cell replacement therapy for type 1 diabetes (T1D), affecting millions of people worldwide, requires the immunoisolation of insulin-producing islets by encapsulation with a semi-impermeable material. Due to the shortage of donor islets, human pluripotent stem cell (hPSC) derived islets are an attractive alternative. However, properties of the encapsulating substrate are known to influence hPSC cell fate. In this work, we determine the effect of substrate stiffness on growth and pancreatic fate of encapsulated hPSCs. We precisely identify the range of substrate properties conducive for pancreatic cell fate, and also the mechanism by which substrate properties modify the cell signaling pathways and hence cell fate. Such information will be critical in driving regenerative cell therapy for long term treatment of T1D.
Collapse
Affiliation(s)
- Thomas Richardson
- Department of Chemical Engineering, University of Pittsburgh, United States
| | - Sierra Barner
- Department of Chemical Engineering, University of Pittsburgh, United States
| | - Joseph Candiello
- Department of Bioengineering, University of Pittsburgh, United States
| | - Prashant N Kumta
- Department of Chemical Engineering, University of Pittsburgh, United States; McGowan Institute of Regenerative Medicine, University of Pittsburgh, United States; Department of Bioengineering, University of Pittsburgh, United States; Department of Mechanical and Materials Science, University of Pittsburgh, United States; Department of Oral Biology, University of Pittsburgh, United States
| | - Ipsita Banerjee
- Department of Chemical Engineering, University of Pittsburgh, United States; McGowan Institute of Regenerative Medicine, University of Pittsburgh, United States; Department of Bioengineering, University of Pittsburgh, United States.
| |
Collapse
|
25
|
Lee GH, Lee JS, Wang X, Hoon Lee S. Bottom-Up Engineering of Well-Defined 3D Microtissues Using Microplatforms and Biomedical Applications. Adv Healthc Mater 2016; 5:56-74. [PMID: 25880830 DOI: 10.1002/adhm.201500107] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/17/2015] [Indexed: 12/26/2022]
Abstract
During the last decades, the engineering of well-defined 3D tissues has attracted great attention because it provides in vivo mimicking environment and can be a building block for the engineering of bioartificial organs. In this Review, diverse engineering methods of 3D tissues using microscale devices are introduced. Recent progress of microtechnologies has enabled the development of microplatforms for bottom-up assembly of diverse shaped 3D tissues consisting of various cells. Micro hanging-drop plates, microfluidic chips, and arrayed microwells are the typical examples. The encapsulation of cells in hydrogel microspheres and microfibers allows the engineering of 3D microtissues with diverse shapes. Applications of 3D microtissues in biomedical fields are described, and the future direction of microplatform-based engineering of 3D micro-tissues is discussed.
Collapse
Affiliation(s)
- Geon Hui Lee
- KU-KIST Graduate School of Converging, Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| | - Jae Seo Lee
- KU-KIST Graduate School of Converging, Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| | - Xiaohong Wang
- Center of Organ Manufacturing; Department of Mechanical Engineering; Tsinghua University; Beijing 100084 P. R. China
| | - Sang Hoon Lee
- School of Biomedical Engineering; College of Health Science; Korea University; Seoul 136-701 Republic of Korea
| |
Collapse
|
26
|
Candiello J, Richardson T, Padgaonkar K, Task K, Kumta PN, Banerjee I. Alginate encapsulation of chitosan nanoparticles: a viable alternative to soluble chemical signaling in definitive endoderm induction of human embryonic stem cells. J Mater Chem B 2016; 4:3575-3583. [DOI: 10.1039/c5tb02428e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitoson nanoparticle augmented encapsulated alginate (CNPEA) induces definitive endoderm (DE) differentiation of human embryonic stem cells without growth factor supplementation.
Collapse
Affiliation(s)
- Joseph Candiello
- Department of Bioengineering
- University of Pittsburgh
- Pittsburgh
- USA
| | - Thomas Richardson
- Department of Chemical Engineering
- University of Pittsburgh
- Pittsburgh
- USA
| | - Kimaya Padgaonkar
- Department of Chemical Engineering
- University of Pittsburgh
- Pittsburgh
- USA
| | - Keith Task
- Department of Chemical Engineering
- University of Pittsburgh
- Pittsburgh
- USA
| | - Prashant N. Kumta
- Department of Bioengineering
- University of Pittsburgh
- Pittsburgh
- USA
- Department of Chemical Engineering
| | - Ipsita Banerjee
- Department of Bioengineering
- University of Pittsburgh
- Pittsburgh
- USA
- Department of Chemical Engineering
| |
Collapse
|
27
|
Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges. Stem Cell Rev Rep 2015; 11:96-109. [PMID: 25077810 DOI: 10.1007/s12015-014-9544-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment, growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds.
Collapse
|
28
|
Hosseini SM, Vasaghi A, Nakhlparvar N, Roshanravan R, Talaei-Khozani T, Razi Z. Differentiation of Wharton's jelly mesenchymal stem cells into neurons in alginate scaffold. Neural Regen Res 2015; 10:1312-6. [PMID: 26487861 PMCID: PMC4590246 DOI: 10.4103/1673-5374.162768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alginate scaffold has been considered as an appropriate biomaterial for promoting the differentiation of embryonic stem cells toward neuronal cell lineage. We hypothesized that alginate scaffold is suitable for culturing Wharton's jelly mesenchymal stem cells (WJMSCs) and can promote the differentiation of WJMSCs into neuron-like cells. In this study, we cultured WJMSCs in a three-dimensional scaffold fabricated by 0.25% alginate and 50 mM CaCl2 in the presence of neurogenic medium containing 10 μM retinoic acid and 20 ng/mL basic fibroblast growth factor. These cells were also cultured in conventional two-dimensional culture condition in the presence of neurogenic medium as controls. After 10 days, immunofluorescence staining was performed for detecting β-tubulin (marker for WJMSCs-differentiated neuron) and CD271 (motor neuron marker). β-Tubulin and CD271 expression levels were significantly greater in the WJMSCs cultured in the three-dimensional alginate scaffold than in the conventional two-dimensional culture condition. These findings suggest that three-dimensional alginate scaffold cell culture system can induce neuronal differentiation of WJMSCs effectively.
Collapse
Affiliation(s)
- Seyed Mojtaba Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran ; Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Attiyeh Vasaghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Newsha Nakhlparvar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran ; Cell and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Roshanravan
- Colorectal Research Center, Department of Surgery, Shiraz University of Medical Science, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Laboratory, Department of Tissue Engineering, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran ; Laboratory for Stem Cell Research, Department of Anatomy, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Razi
- Cell and Molecular Medicine Student Research Group, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran ; Department of Medical Physics, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Richardson T, Kumta PN, Banerjee I. Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells. Tissue Eng Part A 2015; 20:3198-211. [PMID: 24881778 DOI: 10.1089/ten.tea.2013.0659] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pluripotent property of human embryonic stem cells (hESCs) makes them attractive for treatment of degenerative diseases such as diabetes. We have developed a stage-wise directed differentiation protocol to produce alginate-encapsulated islet-like cells derived from hESCs, which can be directly implanted for diabetes therapy. The advantage of alginate encapsulation lies in its capability to immunoisolate, along with the added possibility of scalable culture. We have evaluated the possibility of encapsulating hESCs at different stages of differentiation. Encapsulation of predifferentiated cells resulted in insufficient cellular yield and differentiation. On the other hand, encapsulation of undifferentiated hESCs followed by differentiation induction upon encapsulation resulted in the highest viability and differentiation. More striking was that alginate encapsulation resulted in a much stronger differentiation compared to parallel two-dimensional cultures, resulting in 20-fold increase in c-peptide protein synthesis. To elucidate the mechanism contributing to encapsulation-mediated enhancement in hESC maturation, investigation of the signaling pathways revealed interesting insight. While the phospho-protein levels of all the tested signaling molecules were lower under encapsulation, the ratio of pSMAD/pAKT was significantly higher, indicating a more efficient signal transduction under encapsulation. These results clearly demonstrate that alginate encapsulation of hESCs and differentiation to islet-cell types provides a potentially translatable treatment option for type 1 diabetes.
Collapse
Affiliation(s)
- Thomas Richardson
- 1 Department of Chemical Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
30
|
Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research. Stem Cells Int 2015; 2015:167025. [PMID: 26351461 PMCID: PMC4553184 DOI: 10.1155/2015/167025] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/07/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022] Open
Abstract
Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity), viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D) and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement), and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems.
Collapse
Affiliation(s)
| | - Egor Osidak
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Gamaleya Research Institute of Epidemiology and Microbiology Federal State Budgetary Institution, Ministry of Health of the Russian Federation, Gamalei 18, Moscow 123098, Russia
| | - Sergey Domogatsky
- Imtek Limited, 3 Cherepkovskaya 15, Moscow 21552, Russia
- Russian Cardiology Research and Production Center Federal State Budgetary Institution, Ministry of Health of the Russian Federation, 3 Cherepkovskaya 15, Moscow 21552, Russia
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Anna Domogatskaya
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
31
|
Lehmann R, Gallert C, Roddelkopf T, Junginger S, Thurow K. Biomek Cell Workstation: A Flexible System for Automated 3D Cell Cultivation. ACTA ACUST UNITED AC 2015. [PMID: 26203054 DOI: 10.1177/2211068215594580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The shift from 2D cultures to 3D cultures enables improvement in cell culture research due to better mimicking of in vivo cell behavior and environmental conditions. Different cell lines and applications require altered 3D constructs. The automation of the manufacturing and screening processes can advance the charge stability, quality, repeatability, and precision. In this study we integrated the automated production of three 3D cell constructs (alginate beads, spheroid cultures, pellet cultures) using the Biomek Cell Workstation and compared them with the traditional manual methods and their consequent bioscreening processes (proliferation, toxicity; days 14 and 35) using a high-throughput screening system. Moreover, the possible influence of antibiotics (penicillin/streptomycin) on the production and screening processes was investigated. The cytotoxicity of automatically produced 3D cell cultures (with and without antibiotics) was mainly decreased. The proliferation showed mainly similar or increased results for the automatically produced 3D constructs. We concluded that the traditional manual methods can be replaced by the automated processes. Furthermore, the formation, cultivation, and screenings can be performed without antibiotics to prevent possible effects.
Collapse
Affiliation(s)
- R Lehmann
- Center for Life Science Automation (celisca), University of Rostock, Rostock, Germany
| | - C Gallert
- Center for Life Science Automation (celisca), University of Rostock, Rostock, Germany
| | - T Roddelkopf
- Center for Life Science Automation (celisca), University of Rostock, Rostock, Germany
| | - S Junginger
- Institute of Automation, University of Rostock, Rostock, Germany
| | - K Thurow
- Center for Life Science Automation (celisca), University of Rostock, Rostock, Germany
| |
Collapse
|
32
|
Shelke NB, Lee P, Anderson M, Mistry N, Nagarale RK, Ma XM, Yu X, Kumbar SG. Neural tissue engineering: nanofiber-hydrogel based composite scaffolds. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3594] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Namdev B. Shelke
- Department of Orthopaedic Surgery, UConn Health, Farmington; CT 06030 USA
- Institute for Regenerative Engineering, UConn Health, Farmington; CT 06030 USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington; CT 06030 USA
| | - Paul Lee
- Department of Chemistry, Chemical Biology and Biomedical Engineering; Stevens Institute of Technology; Hoboken NJ 07030 USA
| | - Matthew Anderson
- Department of Orthopaedic Surgery, UConn Health, Farmington; CT 06030 USA
- Institute for Regenerative Engineering, UConn Health, Farmington; CT 06030 USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington; CT 06030 USA
| | - Nikhil Mistry
- Department of Orthopaedic Surgery, UConn Health, Farmington; CT 06030 USA
| | - Rajaram K. Nagarale
- Reverse Osmosis Division; Central Salt and Marine Chemicals Research Institute; Bhavnagar Gujarat 364002 India
| | - Xin-Ming Ma
- Department of Neuroscience; University of Connecticut Health Center; Farmington CT 06030 USA
| | - Xiaojun Yu
- Department of Chemistry, Chemical Biology and Biomedical Engineering; Stevens Institute of Technology; Hoboken NJ 07030 USA
| | - Sangamesh G. Kumbar
- Department of Orthopaedic Surgery, UConn Health, Farmington; CT 06030 USA
- Institute for Regenerative Engineering, UConn Health, Farmington; CT 06030 USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington; CT 06030 USA
- Department of Biomedical Engineering; University of Connecticut; Storrs CT 06269 USA
| |
Collapse
|
33
|
Zhao S, Agarwal P, Rao W, Huang H, Zhang R, Liu Z, Yu J, Weisleder N, Zhang W, He X. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells. Integr Biol (Camb) 2015; 6:874-84. [PMID: 25036382 DOI: 10.1039/c4ib00100a] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel coaxial electrospray technology is developed to generate microcapsules with a hydrogel shell of alginate and an aqueous liquid core of living cells using two aqueous fluids in one step. Approximately 50 murine embryonic stem (ES) cells encapsulated in the core with high viability (92.3 ± 2.9%) can proliferate to form a single ES cell aggregate of 128.9 ± 17.4 μm in each microcapsule within 7 days. Quantitative analyses of gene and protein expression indicate that ES cells cultured in the miniaturized 3D liquid core of the core-shell microcapsules have significantly higher pluripotency on average than the cells cultured on the 2D substrate or in the conventional 3D alginate hydrogel microbeads without a core-shell architecture. The higher pluripotency is further suggested by their significantly higher capability of differentiation into beating cardiomyocytes and higher expression of cardiomyocyte specific gene markers on average after directed differentiation under the same conditions. Considering its wide availability, easiness to set up and operate, reusability, and high production rate, the novel coaxial electrospray technology together with the microcapsule system is of importance for mass production of ES cells with high pluripotency to facilitate translation of the emerging pluripotent stem cell-based regenerative medicine into the clinic.
Collapse
Affiliation(s)
- Shuting Zhao
- Department of Biomedical Engineering, The Ohio State University, 1080 Carmack Road, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lehmann R, Gallert C, Roddelkopf T, Junginger S, Wree A, Thurow K. 3 dimensional cell cultures: a comparison between manually and automatically produced alginate beads. Cytotechnology 2015; 68:1049-62. [PMID: 25842191 DOI: 10.1007/s10616-015-9861-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/13/2015] [Indexed: 01/12/2023] Open
Abstract
Cancer diseases are a common problem of the population caused by age and increased harmful environmental influences. Herein, new therapeutic strategies and compound screenings are necessary. The regular 2D cultivation has to be replaced by three dimensional cell culturing (3D) for better simulation of in vivo conditions. The 3D cultivation with alginate matrix is an appropriate method for encapsulate cells to form cancer constructs. The automated manufacturing of alginate beads might be an ultimate method for large-scaled manufacturing constructs similar to cancer tissue. The aim of this study was the integration of full automated systems for the production, cultivation and screening of 3D cell cultures. We compared the automated methods with the regular manual processes. Furthermore, we investigated the influence of antibiotics on these 3D cell culture systems. The alginate beads were formed by automated and manual procedures. The automated steps were processes by the Biomek(®) Cell Workstation (celisca, Rostock, Germany). The proliferation and toxicity were manually and automatically evaluated at day 14 and 35 of cultivation. The results visualized an accumulation and expansion of cell aggregates over the period of incubation. However, the proliferation and toxicity were faintly and partly significantly decreased on day 35 compared to day 14. The comparison of the manual and automated methods displayed similar results. We conclude that the manual production process could be replaced by the automation. Using automation, 3D cell cultures can be produced in industrial scale and improve the drug development and screening to treat serious illnesses like cancer.
Collapse
Affiliation(s)
- R Lehmann
- Center for Life Science Automation (celisca), University of Rostock, Friedrich-Barnewitz Str. 8, 18119, Rostock, Germany.
| | - C Gallert
- Center for Life Science Automation (celisca), University of Rostock, Friedrich-Barnewitz Str. 8, 18119, Rostock, Germany
| | - T Roddelkopf
- Center for Life Science Automation (celisca), University of Rostock, Friedrich-Barnewitz Str. 8, 18119, Rostock, Germany
| | - S Junginger
- Institute of Automation, University Rostock, Rostock, Germany
| | - A Wree
- Institute of Anatomy, University Rostock, Rostock, Germany
| | - K Thurow
- Center for Life Science Automation (celisca), University of Rostock, Friedrich-Barnewitz Str. 8, 18119, Rostock, Germany
| |
Collapse
|
35
|
Konagaya S, Iwata H. Microencapsulation of dopamine neurons derived from human induced pluripotent stem cells. Biochim Biophys Acta Gen Subj 2014; 1850:22-32. [PMID: 25281770 DOI: 10.1016/j.bbagen.2014.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/10/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress. METHODS hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons. RESULTS Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved. CONCLUSION hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads. GENERAL SIGNIFICANCE Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons.
Collapse
Affiliation(s)
- Shuhei Konagaya
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroo Iwata
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
36
|
Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials 2014; 35:4636-45. [PMID: 24631250 DOI: 10.1016/j.biomaterials.2014.02.039] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/21/2014] [Indexed: 12/14/2022]
Abstract
Biomaterial-supported culture methods, allowing for directed three-dimensional differentiation of stem cells are an alternative to canonical two-dimensional cell cultures. In this paper, we evaluate the suitability of alginate for three-dimensional cultures to enhance differentiation of mouse embryonic stem cells (mESCs) towards neural lineages. We tested whether encapsulation of mESCs within alginate beads could support and/or enhance neural differentiation with respect to two-dimensional cultures. We encapsulated cells in beads of alginate with or without modification by fibronectin (Fn) or hyaluronic acid (HA). Gene expression analysis showed that cells grown in alginate and alginate-HA present increased differentiation toward neural lineages with respect to the two-dimensional control and to Fn group. Immunocytochemistry analyses confirmed these results, further showing terminal differentiation of neurons as seen by the expression of synaptic markers and markers of different neuronal subtypes. Our data show that alginate, alone or modified, is a suitable biomaterial to promote in vitro differentiation of pluripotent cells toward neural fates.
Collapse
|
37
|
Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta Gen Subj 2014; 1840:2506-19. [PMID: 24418517 PMCID: PMC4081568 DOI: 10.1016/j.bbagen.2014.01.010] [Citation(s) in RCA: 901] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 02/08/2023]
Abstract
Background Extracellular matrix (ECM) is a dynamic and complex environment characterized by biophysical, mechanical and biochemical properties specific for each tissue and able to regulate cell behavior. Stem cells have a key role in the maintenance and regeneration of tissues and they are located in a specific microenvironment, defined as niche. Scope of review We overview the progresses that have been made in elucidating stem cell niches and discuss the mechanisms by which ECM affects stem cell behavior. We also summarize the current tools and experimental models for studying ECM–stem cell interactions. Major conclusions ECM represents an essential player in stem cell niche, since it can directly or indirectly modulate the maintenance, proliferation, self-renewal and differentiation of stem cells. Several ECM molecules play regulatory functions for different types of stem cells, and based on its molecular composition the ECM can be deposited and finely tuned for providing the most appropriate niche for stem cells in the various tissues. Engineered biomaterials able to mimic the in vivo characteristics of stem cell niche provide suitable in vitro tools for dissecting the different roles exerted by the ECM and its molecular components on stem cell behavior. General significance ECM is a key component of stem cell niches and is involved in various aspects of stem cell behavior, thus having a major impact on tissue homeostasis and regeneration under physiological and pathological conditions. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Stem cells have a key role in the maintenance and regeneration of tissues. The extracellular matrix is a critical regulator of stem cell function. Stem cells reside in a dynamic and specialized microenvironment denoted as niche. The extracellular matrix represents an essential component of stem cell niches. Bioengineered niches can be used for investigating stem cell–matrix interactions.
Collapse
Affiliation(s)
- Francesca Gattazzo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Anna Urciuolo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy.
| |
Collapse
|