1
|
Wang H, Dwamena A. Olfactory Ecto-Mesenchymal Stem Cells in Modeling and Treating Alzheimer's Disease. Int J Mol Sci 2024; 25:8492. [PMID: 39126059 PMCID: PMC11313019 DOI: 10.3390/ijms25158492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is a condition in the brain that is marked by a gradual and ongoing reduction in memory, thought, and the ability to perform simple tasks. AD has a poor prognosis but no cure yet. Therefore, the need for novel models to study its pathogenesis and therapeutic strategies is evident, as the brain poorly recovers after injury and neurodegenerative diseases and can neither replace dead neurons nor reinnervate target structures. Recently, mesenchymal stem cells (MSCs), particularly those from the human olfactory mucous membrane referred to as the olfactory ecto-MSCs (OE-MSCs), have emerged as a potential avenue to explore in modeling AD and developing therapeutics for the disease due to their lifelong regeneration potency and facile accessibility. This review provides a comprehensive summary of the current literature on isolating OE-MSCs and delves into whether they could be reliable models for studying AD pathogenesis. It also explores whether healthy individual-derived OE-MSCs could be therapeutic agents for the disease. Despite being a promising tool in modeling and developing therapies for AD, some significant issues remain, which are also discussed in the review.
Collapse
Affiliation(s)
- Hongmin Wang
- Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Science Center, Lubbock, TX 79424, USA;
| | | |
Collapse
|
2
|
An Alzheimer’s Disease Patient-Derived Olfactory Stem Cell Model Identifies Gene Expression Changes Associated with Cognition. Cells 2022; 11:cells11203258. [PMID: 36291125 PMCID: PMC9601087 DOI: 10.3390/cells11203258] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
An early symptom of Alzheimer’s disease (AD) is an impaired sense of smell, for which the molecular basis remains elusive. Here, we generated human olfactory neurosphere-derived (ONS) cells from people with AD and mild cognitive impairment (MCI), and performed global RNA sequencing to determine gene expression changes. ONS cells expressed markers of neuroglial differentiation, providing a unique cellular model to explore changes of early AD-associated pathways. Our transcriptomics data from ONS cells revealed differentially expressed genes (DEGs) associated with cognitive processes in AD cells compared to MCI, or matched healthy controls (HC). A-Kinase Anchoring Protein 6 (AKAP6) was the most significantly altered gene in AD compared to both MCI and HC, and has been linked to cognitive function. The greatest change in gene expression of all DEGs occurred between AD and MCI. Gene pathway analysis revealed defects in multiple cellular processes with aging, intellectual deficiency and alternative splicing being the most significantly dysregulated in AD ONS cells. Our results demonstrate that ONS cells can provide a cellular model for AD that recapitulates disease-associated differences. We have revealed potential novel genes, including AKAP6 that may have a role in AD, particularly MCI to AD transition, and should be further examined.
Collapse
|
3
|
Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 2021; 12:735-757. [PMID: 33491126 PMCID: PMC7829061 DOI: 10.1007/s13346-020-00891-5] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Over the past 10 years, the interest in intranasal drug delivery in pharmaceutical R&D has increased. This review article summarises information on intranasal administration for local and systemic delivery, as well as for CNS indications. Nasal delivery offers many advantages over standard systemic delivery systems, such as its non-invasive character, a fast onset of action and in many cases reduced side effects due to a more targeted delivery. There are still formulation limitations and toxicological aspects to be optimised. Intranasal drug delivery in the field of drug development is an interesting delivery route for the treatment of neurological disorders. Systemic approaches often fail to efficiently supply the CNS with drugs. This review paper describes the anatomical, histological and physiological basis and summarises currently approved drugs for administration via intranasal delivery. Further, the review focuses on toxicological considerations of intranasally applied compounds and discusses formulation aspects that need to be considered for drug development.
Collapse
Affiliation(s)
- Lea-Adriana Keller
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Olivia Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
4
|
Farwana M, Tornari C, Sandison A, Surda P. Olfactory neurocytoma as a unique cause of chronic SIADH. BMJ Case Rep 2021; 14:14/1/e235021. [PMID: 33461989 PMCID: PMC7813326 DOI: 10.1136/bcr-2020-235021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A 32-year-old man was found to have a nasal mass on DOTATATE positron emission tomography (PET) scan to investigate the cause of his syndrome of inappropriate antidiuretic hormone secretion (SIADH). The patient presented 6 years earlier with malignant hypertension followed by a second emergency admission for hyponatraemia. Multiple scans and blood tests over 6 years yielded no cause for his SIADH. Nasendoscopy was unremarkable. A PET scan prompted endoscopic sinus surgery which resulted in the resection of a mass in the anterior hiatus semilunaris. The histological findings were fitting with a diagnosis of a neurocytic-type tumour favouring an olfactory neurocytoma. Following resection, the patient remains well and is cured of his SIADH. An olfactory neurocytoma although rare should be considered as a benign differential for a mass in the nasal space. This case demonstrates how an olfactory neurocytoma can present as a cause of SIADH.
Collapse
Affiliation(s)
- Mohammad Farwana
- Ear, Nose and Throat / Head and Neck Department, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Chrysostomos Tornari
- Ear, Nose and Throat / Head and Neck Department, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Ann Sandison
- Ear, Nose and Throat / Head and Neck Department, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Pavol Surda
- Ear, Nose and Throat / Head and Neck Department, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| |
Collapse
|
5
|
Kang B, Park JH, Lee HM. Histamine Induced Production of Chemokine CXCL8 Through H1R/PLC and NF-κB Signaling Pathways in Nasal Fibroblasts. JOURNAL OF RHINOLOGY 2020. [DOI: 10.18787/jr.2019.00302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives: Histamine has been suggested to play an important role during allergic and inflammatory reactions, affecting allergic rhinitis and chronic rhinosinusitis. CXCL8 is a pro-inflammatory chemokine and a critical factor that causes many airway inflammatory diseases including allergic rhinitis and chronic rhinosinusitis.Materials and Method: Histamine cytotoxicity was measured by MTT assay. Real-time polymerase chain reaction was used to identify histamine type 1 receptor in nasal fibroblasts. The fibroblasts were then treated with histamine with or without a histamine type 1 receptor antagonist and the CXCL8 protein was assessed using an enzyme-linked immunosorbent assay (ELISA). The downstream signaling molecules, including phospholipase C and phospho-p50, were evaluated by western blot and immunofluorescent staining.Results: Histamine had no significant cytotoxic effect until the concentration reached 1,000 μM. Histamine type 1 receptor mRNA was expressed in nasal fibroblasts. CXCL8 protein expression level was significantly increased following histamine stimulation. However, the expression level of CXCL8 decreased when phospholipase C was inhibited by U73122. Histamine increased phospho-p50 expression as seen in western blot results. The BAY11-7082, NF-κB inhibitor significantly reduced CXCL8 production in histamine-stimulated nasal fibroblasts.Conclusion: Histamine can induce the production of NF-κB controlled-chemokine CXCL8 by nasal fibroblasts, which supports a role for histamine in upper airway inflammatory diseases.
Collapse
|
6
|
Alvites RD, Branquinho MV, Caseiro AR, Amorim I, Santos Pedrosa S, Rêma A, Faria F, Porto B, Oliveira C, Teixeira P, Magalhães R, Geuna S, Varejão ASP, Maurício AC. Rat Olfactory Mucosa Mesenchymal Stem/Stromal Cells (OM-MSCs): A Characterization Study. Int J Cell Biol 2020; 2020:2938258. [PMID: 32411249 PMCID: PMC7212324 DOI: 10.1155/2020/2938258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Stem/stromal cell-based therapies are a branch of regenerative medicine and stand as an attractive option to promote the repair of damaged or dysfunctional tissues and organs. Olfactory mucosa mesenchymal stem/stromal cells have been regarded as a promising tool in regenerative therapies because of their several favorable properties such as multipotency, high proliferation rate, helpful location, and few associated ethical issues. These cells are easily accessible in the nasal cavity of most mammals, including the rat, can be easily applied in autologous treatments, and do not cope with most of the obstacles associated with the use of other stem cells. Despite this, its application in preclinical trials and in both human and animal patients is still limited because of the small number of studies performed so far and to the nonexistence of a standard and unambiguous protocol for collection, isolation, and therapeutic application. In the present work a validation of a protocol for isolation, culture, expansion, freezing, and thawing of olfactory mucosa mesenchymal stem/stromal cells was performed, applied to the rat model, as well as a biological characterization of these cells. To investigate the therapeutic potential of OM-MSCs and their eventual safe application in preclinical trials, the main characteristics of OMSC stemness were addressed.
Collapse
Affiliation(s)
- Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Mariana V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana R. Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- REQUIMTE/LAQV – U. Porto – Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, nº 197 Lordemão, 3020-210 Coimbra, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Alexandra Rêma
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Fátima Faria
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Orbassano, Turin, Italy
| | - Artur S. P. Varejão
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
7
|
Simorgh S, Alizadeh R, Eftekharzadeh M, Haramshahi SMA, Milan PB, Doshmanziari M, Ramezanpour F, Gholipourmalekabadi M, Seifi M, Moradi F. Olfactory mucosa stem cells: An available candidate for the treatment of the Parkinson's disease. J Cell Physiol 2019; 234:23763-23773. [PMID: 31173364 DOI: 10.1002/jcp.28944] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023]
Abstract
Olfactory ectomesenchymal stem cells (OE-MSCs) possess the immunosuppressive activity and regeneration capacity and hold a lot of promises for neurodegenerative disorders treatment. This study aimed to determine OE-MSCs which are able to augment and differentiate into functional neurons and regenerate the CNS and also examine whether the implantation of OE-MSCs in the pars compacta of the substantia nigra (SNpc) can improve Parkinson's symptoms in a rat model-induced with 6-hydroxydopamine. We isolated OE-MSCs from lamina propria in olfactory mucosa and characterized them using flow cytometry and immunocytochemistry. The therapeutic potential of OE-MSCs was evaluated by the transplantation of isolated cells using a rat model of acute SN injury as a Parkinson's disease. Significant behavioral improvement in Parkinsonian rats was elicited by the OE-MSCs. The results demonstrate that the expression of PAX2, PAX5, PITX3, dopamine transporter, and tyrosine hydroxylase was increased by OE-MSCs compared to the control group which is analyzed with real-time polymerase chain reaction technique and immunohistochemical staining. In the outcome, the transplantation of 1,1'-dioctadecyl-3,3,3'3'-tetramethyl indocarbocyanine perchlorate labeled OE-MSCs that were fully differentiated to dopaminergic neurons contribute to a substantial improvement in patients with Parkinson's. Together, our results provide that using OE-MSCs in neurodegenerative disorders might lead to better neural regeneration.
Collapse
Affiliation(s)
- Sara Simorgh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Eftekharzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Doshmanziari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Ramezanpour
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Seifi
- Departments of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Alvites RD, Caseiro AR, Pedrosa SS, Branquinho ME, Varejão ASP, Maurício AC. The Nasal Cavity of the Rat and Mouse-Source of Mesenchymal Stem Cells for Treatment of Peripheral Nerve Injury. Anat Rec (Hoboken) 2018; 301:1678-1689. [PMID: 29710430 DOI: 10.1002/ar.23844] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Abstract
The nasal cavity performs several crucial functions in mammals, including rodents, being involved in respiration, behavior, reproduction, and olfaction. Its anatomical structure is complex and divided into several regions, including the olfactory recess where the olfactory mucosa (OM) is located and where the capture and interaction with the environmental odorants occurs. Among the cells of this region are the OM mesenchymal stem cells (MSCs), whose location raises the possibility that these cells could be involved in the peculiar ability of the olfactory nerve to regenerate continuously throughout life, although this relationship has not yet been confirmed. These cells, like all MSCs, present functional characteristics that make them candidates in new therapies associated with regenerative medicine, namely to promote the regeneration of the peripheral nerve after injury. The availability of stem cells to be therapeutically applied essentially depends on their collection in the tissue of origin. In the case of mice and rat's OM-MSCs, knowledge about the anatomy and histology of their nasal cavity is essential in establishing effective collection protocols. The present article describes the morphological characteristics of rodent's OM and establishes an alternative protocol for access to the olfactory recess and collection of the OM. Anat Rec, 301:1678-1689, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rui Damásio Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal.,Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal.,Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal.,Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Mariana Esteves Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal.,Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Artur S P Varejão
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Porto, Portugal.,Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| |
Collapse
|
9
|
Abdel-Rahman M, Galhom RA, Nasr El-Din WA, Mohammed Ali MH, Abdel-Hamid AEDS. Therapeutic efficacy of olfactory stem cells in rotenone induced Parkinsonism in adult male albino rats. Biomed Pharmacother 2018; 103:1178-1186. [DOI: 10.1016/j.biopha.2018.04.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
|
10
|
Stamegna JC, Sadelli K, Escoffier G, Girard SD, Veron AD, Bonnet A, Khrestchatisky M, Gauthier P, Roman FS. Grafts of Olfactory Stem Cells Restore Breathing and Motor Functions after Rat Spinal Cord Injury. J Neurotrauma 2018; 35:1765-1780. [PMID: 29357739 DOI: 10.1089/neu.2017.5383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transplantation of olfactory ecto-mesenchymal stem cells (OEMSCs) could be a helpful therapeutic strategy for spinal cord repair. Using an acute rat model of high cervical contusion that provokes a persistent hemidiaphragmatic and foreleg paralysis, we evaluated the therapeutic effect of a delayed syngeneic transplantation (two days post-contusion) of OEMSCs within the injured spinal cord. Respiratory function was assessed using diaphragmatic electromyography and neuroelectrophysiological recordings of phrenic nerves (innervating the diaphragm). Locomotor function was evaluated using the ladder-walking locomotor test. Cellular reorganization in the injured area was also studied using immunohistochemical and microscopic techniques. We report a substantial improvement in breathing movements, in activities of the ipsilateral phrenic nerve and ipsilateral diaphragm, and also in locomotor abilities four months post-transplantation with nasal OEMSCs. Moreover, in the grafted spinal cord, axonal disorganization and inflammation were reduced. Some grafted stem cells adopted a neuronal phenotype, and axonal sparing was observed in the injury site. The therapeutic effect on the supraspinal command is presumably because of both neuronal replacements and beneficial paracrine effects on the injury area. Our study provides evidence that nasal OEMSCs could be a first step in clinical application, particularly in patients with reduced breathing/locomotor movements.
Collapse
Affiliation(s)
- Jean-Claude Stamegna
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Kevin Sadelli
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Guy Escoffier
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Stéphane D Girard
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Antoine D Veron
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France .,2 IRSEA, Research Institute in Semiochemistry and Applied Ethology , Apt, France
| | - Amandine Bonnet
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | | | - Patrick Gauthier
- 3 Laboratoire de Neurosciences et Cognitives, Aix-Marseille Université , Marseille, France
| | - François S Roman
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| |
Collapse
|
11
|
Veron AD, Bienboire-Frosini C, Feron F, Codecasa E, Deveze A, Royer D, Watelet P, Asproni P, Sadelli K, Chabaud C, Stamegna JC, Fagot J, Khrestchatisky M, Cozzi A, Roman FS, Pageat P, Mengoli M, Girard SD. Isolation and characterization of olfactory ecto-mesenchymal stem cells from eight mammalian genera. BMC Vet Res 2018; 14:17. [PMID: 29343270 PMCID: PMC5772688 DOI: 10.1186/s12917-018-1342-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 01/11/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Stem cell-based therapies are an attractive option to promote regeneration and repair defective tissues and organs. Thanks to their multipotency, high proliferation rate and the lack of major ethical limitations, "olfactory ecto-mesenchymal stem cells" (OE-MSCs) have been described as a promising candidate to treat a variety of damaged tissues. Easily accessible in the nasal cavity of most mammals, these cells are highly suitable for autologous cell-based therapies and do not face issues associated with other stem cells. However, their clinical use in humans and animals is limited due to a lack of preclinical studies on autologous transplantation and because no well-established methods currently exist to cultivate these cells. Here we evaluated the feasibility of collecting, purifying and amplifying OE-MSCs from different mammalian genera with the goal of promoting their interest in veterinary regenerative medicine. Biopsies of olfactory mucosa from eight mammalian genera (mouse, rat, rabbit, sheep, dog, horse, gray mouse lemur and macaque) were collected, using techniques derived from those previously used in humans and rats. The possibility of amplifying these cells and their stemness features and differentiation capability were then evaluated. RESULTS Biopsies were successfully performed on olfactory mucosa without requiring the sacrifice of the donor animal, except mice. Cell populations were rapidly generated from olfactory mucosa explants. These cells displayed similar key features of their human counterparts: a fibroblastic morphology, a robust expression of nestin, an ability to form spheres and similar expression of surface markers (CD44, CD73). Moreover, most of them also exhibited high proliferation rates and clonogenicity with genus-specific properties. Finally, OE-MSCs also showed the ability to differentiate into mesodermal lineages. CONCLUSIONS This article describes for the first time how millions of OE-MSCs can be quickly and easily obtained from different mammalian genera through protocols that are well-suited for autologous transplantations. Moreover, their multipotency makes them relevant to evaluate therapeutic application in a wide variety of tissue injury models. This study paves the way for the development of new fundamental and clinical studies based on OE-MSCs transplantation and suggests their interest in veterinary medicine.
Collapse
Affiliation(s)
- Antoine D Veron
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France. .,Aix Marseille Univ, CNRS, NICN, Marseille, France.
| | - Cécile Bienboire-Frosini
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - François Feron
- Aix Marseille Univ, CNRS, NICN, Marseille, France.,Inserm CBT 1409, Centre d'Investigations Cliniques en Biothérapie, Marseille, France
| | - Elisa Codecasa
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Arnaud Deveze
- Département ORL, Hôpital Universitaire Nord, AP-HM, Marseille, France.,Aix-Marseille Univ, IFSTTAR, LBA, Marseille, France
| | - Dany Royer
- Centre Hospitalier Vétérinaire Pommery, 51100, Reims, France
| | - Paul Watelet
- Société Hippique Le frigouyé, 30650, Saze, France
| | - Pietro Asproni
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Camille Chabaud
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Joël Fagot
- Aix-Marseille Univ, CNRS, LPC, Marseille, France
| | | | - Alessandro Cozzi
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | | | - Patrick Pageat
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Manuel Mengoli
- IRSEA, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400, Apt, France
| | - Stéphane D Girard
- Aix Marseille Univ, CNRS, NICN, Marseille, France.,Present address: Vect-Horus S.A.S., Faculté de Médecine Secteur Nord, CS80011, Boulevard Pierre Dramard, 13344, Marseille, Cedex 15, France
| |
Collapse
|
12
|
Gómez RM, Sánchez MY, Portela-Lomba M, Ghotme K, Barreto GE, Sierra J, Moreno-Flores MT. Cell therapy for spinal cord injury with olfactory ensheathing glia cells (OECs). Glia 2018; 66:1267-1301. [PMID: 29330870 DOI: 10.1002/glia.23282] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
The prospects of achieving regeneration in the central nervous system (CNS) have changed, as most recent findings indicate that several species, including humans, can produce neurons in adulthood. Studies targeting this property may be considered as potential therapeutic strategies to respond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma may interrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, as seen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs are due to the immediate and significant disruption of the ascending and descending spinal pathways, which result in varying degrees of motor and sensory impairment. Recent therapeutic studies for SCI have focused on cell transplantation in animal models, using cells capable of inducing axon regeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactory ensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based therapeutic strategies, there is still little information regarding the mechanisms underlying the success of transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable to achieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulate angiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion. Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both from animal models and clinical studies performed on SCI patients, providing promising results for future treatments.
Collapse
Affiliation(s)
- Rosa M Gómez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia
| | - Magdy Y Sánchez
- Fundación de Neuroregeneración en Colombia, Grupo de investigación NeuroRec, Bogota D.C, Colombia.,Maestría en Neurociencias, Universidad Nacional de Colombia, Bogota D.C, Colombia
| | - Maria Portela-Lomba
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Kemel Ghotme
- Facultad de Medicina, Universidad de la Sabana, Chía, Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Javier Sierra
- Facultad de CC Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | |
Collapse
|
13
|
Sadelli K, Stamegna JC, Girard SD, Baril N, Escoffier G, Brus M, Véron AD, Khrestchatisky M, Roman FS. Global cerebral ischemia in rats leads to amnesia due to selective neuronal death followed by astroglial scar formation in the CA1 layer. Neurobiol Learn Mem 2017; 141:168-178. [PMID: 28438578 DOI: 10.1016/j.nlm.2017.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/12/2017] [Indexed: 12/23/2022]
Abstract
Global Cerebral Ischemia (GCI) occurs following cardiac arrest or neonatal asphyxia and leads to harmful neurological consequences. In most cases, patients who survive cardiac arrest develop severe cognitive and motor impairments. This study focused on learning and memory deficits associated with brain neuroanatomical reorganization that appears after GCI. The four-vessel occlusion (4VO) model was performed to produce a transient GCI. Hippocampal lesions in ischemic rats were visualized using anatomical Magnetic Resonance Imaging (aMRI). Then, the learning and memory abilities of control and ischemic (bilaterally or unilaterally) rats were assessed through the olfactory associated learning task. Finally, a "longitudinal" histological study was carried out to highlight the cellular reorganizations occurring after GCI. We demonstrated that the imaging, behavioral and histological results are closely related. In fact, aMRI revealed the appearance of hyper-intense signals in the dorsal hippocampus at day 3 post-GCI. Consequently, we showed a rise in cell proliferation (Ki 67+ cells) and endogenous neurogenesis especially in the dentate gyrus (DG) at day 3 post-GCI. Then, hyper-intense signals in the dorsal hippocampus were confirmed by strong neuronal losses in the CA1 layer at day 7 post-GCI. These results were linked with severe learning and memory impairments only in bilaterally ischemic rats at day 14 post-GCI. This amnesia was accompanied by huge astroglial and microglial hyperactivity at day 30 post-GCI. Finally, Nestin+ cells and astrocytes gave rise to astroglial scars, which persisted 60days post-GCI. In the light of these results, the 4VO model appears a reliable method to produce amnesia in order to study and develop new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Nathalie Baril
- Aix Marseille Univ, Fédération de recherche 3C, FR 3512, Marseille, France
| | | | - Maïna Brus
- Aix Marseille Univ, CNRS, NICN, Marseille, France
| | - Antoine D Véron
- Aix Marseille Univ, CNRS, NICN, Marseille, France; IRSEA, Research Institute in Semiochemistry and Applied Ethology, 84400 Apt, France
| | | | | |
Collapse
|
14
|
Bachmann C, Nguyen H, Rosenbusch J, Pham L, Rabe T, Patwa M, Sokpor G, Seong RH, Ashery-Padan R, Mansouri A, Stoykova A, Staiger JF, Tuoc T. mSWI/SNF (BAF) Complexes Are Indispensable for the Neurogenesis and Development of Embryonic Olfactory Epithelium. PLoS Genet 2016; 12:e1006274. [PMID: 27611684 PMCID: PMC5017785 DOI: 10.1371/journal.pgen.1006274] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/03/2016] [Indexed: 01/06/2023] Open
Abstract
Neurogenesis is a key developmental event through which neurons are generated from neural stem/progenitor cells. Chromatin remodeling BAF (mSWI/SNF) complexes have been reported to play essential roles in the neurogenesis of the central nervous system. However, whether BAF complexes are required for neuron generation in the olfactory system is unknown. Here, we identified onscBAF and ornBAF complexes, which are specifically present in olfactory neural stem cells (oNSCs) and olfactory receptor neurons (ORNs), respectively. We demonstrated that BAF155 subunit is highly expressed in both oNSCs and ORNs, whereas high expression of BAF170 subunit is observed only in ORNs. We report that conditional deletion of BAF155, a core subunit in both onscBAF and ornBAF complexes, causes impaired proliferation of oNSCs as well as defective maturation and axonogenesis of ORNs in the developing olfactory epithelium (OE), while the high expression of BAF170 is important for maturation of ORNs. Interestingly, in the absence of BAF complexes in BAF155/BAF170 double-conditional knockout mice (dcKO), OE is not specified. Mechanistically, BAF complex is required for normal activation of Pax6-dependent transcriptional activity in stem cells/progenitors of the OE. Our findings unveil a novel mechanism mediated by the mSWI/SNF complex in OE neurogenesis and development.
Collapse
Affiliation(s)
| | - Huong Nguyen
- University Medical Center, Georg-August-University, Goettingen, Germany
| | | | - Linh Pham
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Tamara Rabe
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Megha Patwa
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Godwin Sokpor
- University Medical Center, Georg-August-University, Goettingen, Germany
| | - Rho H. Seong
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Ruth Ashery-Padan
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | - Ahmed Mansouri
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Anastassia Stoykova
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Jochen F. Staiger
- University Medical Center, Georg-August-University, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| | - Tran Tuoc
- University Medical Center, Georg-August-University, Goettingen, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
| |
Collapse
|
15
|
Ge L, Liu K, Liu Z, Lu M. Co-transplantation of autologous OM-MSCs and OM-OECs: a novel approach for spinal cord injury. Rev Neurosci 2016; 27:259-70. [PMID: 26574889 DOI: 10.1515/revneuro-2015-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/09/2015] [Indexed: 11/15/2022]
Abstract
AbstractSpinal cord injury (SCI) is a disastrous injury that leads to motor and sensory dysfunctions in patients. In recent years, co-transplantation has become an increasingly used therapeutic treatment for patients with SCI. Both mesenchymal stem cells (MSCs) and olfactory-ensheathing cells (OECs) have been adopted to ameliorate SCI, with promising outcomes. Remarkable effects on the rehabilitation of patients with SCI have been achieved using MSCs. Olfactory mucosa (OM) MSCs from human OM are one of the most ideal cell resources for auto-transplantation in clinical application owing to their a high proliferation rate and multipotent capability. In addition, OECs derived from OM have been used to improve functional recovery of SCI and resulted in promising functional recovery in years. Accordingly, co-transplantation of OM-MSCs coupled with OM-OECs has been adopted to improve the recovery of SCI. Here we reviewed the reported applications of OM-MSCs and OM-OECs for SCI treatment and proposed that a novel combined strategy using both autologous OM-MSCs and OM-OECs would achieve a better approach for the treatment of SCI.
Collapse
Affiliation(s)
| | | | - Zhonghua Liu
- 2College of Life Sciences, Hunan Normal University, Changsha 410008, P.R. China
| | - Ming Lu
- 1Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University (163 Hospital of PLA), Changsha 410003, P.R. China
| |
Collapse
|
16
|
RUSU E, NECULA LG, NEAGU AI, ALECU M, STAN C, ALBULESCU R, TANASE CP. Current status of stem cell therapy: opportunities and limitations. Turk J Biol 2016; 40:955-967. [DOI: 10.3906/biy-1506-95] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
17
|
Olfactory ecto-mesenchymal stem cells possess immunoregulatory function and suppress autoimmune arthritis. Cell Mol Immunol 2015; 13:401-8. [PMID: 26388237 DOI: 10.1038/cmi.2015.82] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022] Open
Abstract
Recent studies have identified olfactory ecto-mesenchymal stem cells (OE-MSCs) as a new type of resident stem cell in the olfactory lamina propria. However, it remains unclear whether OE-MSCs possess any immunoregulatory functions. In this study, we found that mouse OE-MSCs expressed higher transforming growth factor-beta and interleukin-10 levels than bone marrow-derived MSCs. In culture, OE-MSCs exerted their immunosuppressive capacity via directly suppressing effector T-cell proliferation and increasing regulatory T (Treg) cell expansion. In mice with collagen-induced arthritis, adoptive transfer of OE-MSCs markedly suppressed arthritis onset and disease severity, which was accompanied by increased Treg cells and reduced Th1/Th17 cell responses in vivo. Taken together, our findings identified a novel function of OE-MSCs in regulating T-cell responses, indicating that OE-MSCs may represent a new cell therapy for the treatment of rheumatoid arthritis and other autoimmune diseases.
Collapse
|