1
|
Rackov G, Iegiani G, Uribe D, Quezada C, Belda-Iniesta C, Escobedo-Lucea C, Silva A, Puig P, González-Rumayor V, Ayuso-Sacido Á. Potential Therapeutic Effects of the Neural Stem Cell-Targeting Antibody Nilo1 in Patient-Derived Glioblastoma Stem Cells. Front Oncol 2020; 10:1665. [PMID: 32974206 PMCID: PMC7468525 DOI: 10.3389/fonc.2020.01665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most devastating and least treatable brain tumor with median survival <15 months and extremely high recurrence rates. Promising results of immune checkpoint blockade obtained from pre-clinical studies in mice did not translate to clinic, and new strategies are urgently needed, particularly those targeting GBM stem cells (GSCs) that are held responsible for drug resistance and tumor recurrence. Patient-derived GSC cultures are critical for finding effective brain tumor therapies. Here, we investigated the ability of the recently described monoclonal antibody Nilo1 to specifically recognize GSCs isolated from GBM surgical samples. We employed five patient-derived GSC cultures with different stemness marker expression and differentiation potential, able to recapitulate original tumors when xenotransplanted in vivo. To answer whether Nilo1 has any functional effects in patient-derived GSCs lines, we treated the cells with Nilo1 in vitro and analyzed cell proliferation, cell cycle, apoptosis, sphere formation, as well as the expression of stem vs. differentiation markers. All tested GSCs stained positively for Nilo1, and the ability of Nilo1 to recognize GSCs strongly relied on their stem-like phenotype. Our results showed that a subset of patient-derived GSCs were sensitive to Nilo1 treatment. In three GSC lines Nilo1 triggered differentiation accompanied by the induction of p21. Most strikingly, in one GSC line Nilo1 completely abrogated self-renewal and led to Bax-associated apoptosis. Our data suggest that Nilo1 targets a molecule functionally relevant for stemness maintenance and pinpoint Nilo1 as a novel antibody-based therapeutical strategy to be used either alone or in combination with cytotoxic drugs for GSC targeting. Further pre-clinical studies are needed to validate the effectiveness of GSC-specific Nilo1 targeting in vivo.
Collapse
Affiliation(s)
- Gorjana Rackov
- IMDEA Nanoscience, Madrid, Spain.,Fundación de Investigación HM Hospitales, Madrid, Spain
| | - Giorgia Iegiani
- Istitute of Applied Molecular Medicine, Faculty of Medicine, San Pablo CEU University, Madrid, Spain
| | - Daniel Uribe
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia Quezada
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | | | - Carmen Escobedo-Lucea
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, United States
| | - Augusto Silva
- Market Access Department, Merck Sharp & Dohme, Madrid, Spain
| | | | | | - Ángel Ayuso-Sacido
- IMDEA Nanoscience, Madrid, Spain.,Brain Tumor Laboratory, Fundación Vithas, Hospitales Vithas, Madrid, Spain.,Instituto de Investigaciones Biosanitarias, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain.,Formerly, Fundación de Investigación HM Hospitales, Institute of Applied Molecular Medicine, Faculty of Medicine, San Pablo CEU University, Madrid, Spain
| |
Collapse
|
2
|
Juškys R, Chomanskis Ž. Glioblastoma Following Traumatic Brain Injury: Case Report and Literature Review. Cureus 2020; 12:e8019. [PMID: 32528758 PMCID: PMC7282376 DOI: 10.7759/cureus.8019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The association between traumatic brain injury and brain cancer is a matter of debate. The available literature is sparse and yields conflicting results. Even though there is a pathophysiological rationale for post-traumatic intracranial cancerogenesis, the direct link still has not been proven. Here we present a case of a patient who developed glioblastoma multiforme four years following the traumatic intracerebral hemorrhage. In addition, we provide a brief review of the relevant literature.
Collapse
Affiliation(s)
- Raimondas Juškys
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Vilnius, LTU
| | - Žilvinas Chomanskis
- Department of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, Vilnius, LTU
| |
Collapse
|
3
|
Santamaria S, Delgado M, Kremer L, Garcia-Sanz JA. Will a mAb-Based Immunotherapy Directed against Cancer Stem Cells Be Feasible? Front Immunol 2017; 8:1509. [PMID: 29170667 PMCID: PMC5684111 DOI: 10.3389/fimmu.2017.01509] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis suggests that within a tumor, there is a small subpopulation of cells with stem cell properties responsible for tumor maintenance and metastasis generation. This hypothesis also implies that new antitumor drugs, rather than targeting the bulk of the tumor mass, would be more effective if they directly targeted the CSC subpopulation. The CSCs from several types of tumors have been identified with mAbs recognizing surface antigens in these cells; however, antigens specifically or exclusively expressed in the CSC population have not yet been identified. Thus, questioning the possibility of using therapeutic antibodies directed against the CSCs. Here, we review the possibilities of using antibodies directly targeting the CSCs as therapeutic agents in the form of naked antibodies, antibodies conjugated to nanoparticles, or antibody cocktails.
Collapse
Affiliation(s)
- Silvia Santamaria
- Cancer Genetics and Cancer Stem Cell Laboratory, Centro de Investigaciones Biologicas, Department of Cellular and Molecular Medicine, Spanish National Research Council (CSIC), Madrid, Spain
| | - Marisa Delgado
- Cancer Genetics and Cancer Stem Cell Laboratory, Centro de Investigaciones Biologicas, Department of Cellular and Molecular Medicine, Spanish National Research Council (CSIC), Madrid, Spain
| | - Leonor Kremer
- Centro Nacional de Biotecnologia, Department of Immunology and Oncology, Spanish National Research Council (CSIC), Madrid, Spain
| | - Jose A Garcia-Sanz
- Cancer Genetics and Cancer Stem Cell Laboratory, Centro de Investigaciones Biologicas, Department of Cellular and Molecular Medicine, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
4
|
Tyagi V, Theobald J, Barger J, Bustoros M, Bayin NS, Modrek AS, Kader M, Anderer EG, Donahue B, Fatterpekar G, Placantonakis DG. Traumatic brain injury and subsequent glioblastoma development: Review of the literature and case reports. Surg Neurol Int 2016; 7:78. [PMID: 27625888 PMCID: PMC5009580 DOI: 10.4103/2152-7806.189296] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/28/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Previous reports have proposed an association between traumatic brain injury (TBI) and subsequent glioblastoma (GBM) formation. METHODS We used literature searches and radiographic evidence from two patients to assess the possibility of a link between TBI and GBM. RESULTS Epidemiological studies are equivocal on a possible link between brain trauma and increased risk of malignant glioma formation. We present two case reports of patients with GBM arising at the site of prior brain injury. CONCLUSION The hypothesis that TBI may predispose to gliomagenesis is disputed by several large-scale epidemiological studies, but supported by some. Radiographic evidence from two cases presented here suggest that GBM formed at the site of brain injury. We propose a putative pathogenesis model that connects post-traumatic inflammation, stem and progenitor cell transformation, and gliomagenesis.
Collapse
Affiliation(s)
- Vineet Tyagi
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Theobald
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - James Barger
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - Mark Bustoros
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - N Sumru Bayin
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA; Kimmel Center for Stem Cell Biology, NYU School of Medicine, Brooklyn, New York, USA
| | - Aram S Modrek
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - Michael Kader
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA
| | - Erich G Anderer
- Division of Neurosurgery, Maimonides Medical Center, Brooklyn, New York, USA
| | - Bernadine Donahue
- Department of Radiation Oncology, NYU School of Medicine, Brooklyn, New York, USA; Maimonides Cancer Center, Brooklyn, New York, USA
| | - Girish Fatterpekar
- Department of Radiology, NYU School of Medicine, Brooklyn, New York, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU School of Medicine, Brooklyn, New York, USA; Kimmel Center for Stem Cell Biology, NYU School of Medicine, Brooklyn, New York, USA; Brain Tumor Center, NYU School of Medicine, Brooklyn, New York, USA
| |
Collapse
|
5
|
Hao N, Neranon K, Ramström O, Yan M. Glyconanomaterials for biosensing applications. Biosens Bioelectron 2016; 76:113-30. [PMID: 26212205 PMCID: PMC4637221 DOI: 10.1016/j.bios.2015.07.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 02/08/2023]
Abstract
Nanomaterials constitute a class of structures that have unique physiochemical properties and are excellent scaffolds for presenting carbohydrates, important biomolecules that mediate a wide variety of important biological events. The fabrication of carbohydrate-presenting nanomaterials, glyconanomaterials, is of high interest and utility, combining the features of nanoscale objects with biomolecular recognition. The structures can also produce strong multivalent effects, where the nanomaterial scaffold greatly enhances the relatively weak affinities of single carbohydrate ligands to the corresponding receptors, and effectively amplifies the carbohydrate-mediated interactions. Glyconanomaterials are thus an appealing platform for biosensing applications. In this review, we discuss the chemistry for conjugation of carbohydrates to nanomaterials, summarize strategies, and tabulate examples of applying glyconanomaterials in in vitro and in vivo sensing applications of proteins, microbes, and cells. The limitations and future perspectives of these emerging glyconanomaterials sensing systems are furthermore discussed.
Collapse
Affiliation(s)
- Nanjing Hao
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | - Kitjanit Neranon
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA; Department of Chemistry, KTH-Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden.
| |
Collapse
|
6
|
Santamaria S, Garcia-Sanz JA. Insights of the brain damage response using antibodies identifying surface antigens on neural stem cells and neuroblasts. Neural Regen Res 2015; 10:1574-5. [PMID: 26692845 PMCID: PMC4660741 DOI: 10.4103/1673-5374.165266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Silvia Santamaria
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Jose A Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Recent advances in biosensing using magnetic glyconanoparticles. Anal Bioanal Chem 2015; 408:1783-803. [PMID: 26282487 DOI: 10.1007/s00216-015-8953-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
In this critical review we discuss the most recent advances in the field of biosensing applications of magnetic glyconanoparticles. We first give an overview of the main synthetic routes to obtain magnetic-nanoparticle-carbohydrate conjugates and then we highlight their most promising applications for magnetic relaxation switching sensing, cell and pathogen detection, cell targeting and magnetic resonance imaging. We end with a critical perspective of the field, identifying the main challenges to be overcome, but also the areas where the most promising developments are likely to happen in the coming decades.
Collapse
|