1
|
Sachslehner AP, Surbek M, Holthaus KB, Steinbinder J, Golabi B, Hess C, Eckhart L. The Evolution of Transglutaminases Underlies the Origin and Loss of Cornified Skin Appendages in Vertebrates. Mol Biol Evol 2024; 41:msae100. [PMID: 38781495 PMCID: PMC11152450 DOI: 10.1093/molbev/msae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Transglutaminases (TGMs) cross-link proteins by introducing covalent bonds between glutamine and lysine residues. These cross-links are essential for epithelial cornification which enables tetrapods to live on land. Here, we investigated which evolutionary adaptations of vertebrates were associated with specific changes in the family of TGM genes. We determined the catalog of TGMs in the main clades of vertebrates, performed a comprehensive phylogenetic analysis of TGMs, and localized the distribution of selected TGMs in tissues. Our data suggest that TGM1 is the phylogenetically oldest epithelial TGM, with orthologs being expressed in the cornified teeth of the lamprey, a basal vertebrate. Gene duplications led to the origin of TGM10 in stem vertebrates, the origin of TGM2 in jawed vertebrates, and an increasing number of epithelium-associated TGM genes in the lineage leading to terrestrial vertebrates. TGM9 is expressed in the epithelial egg tooth, and its evolutionary origin in stem amniotes coincided with the evolution of embryonic development in eggs that are surrounded by a protective shell. Conversely, viviparous mammals have lost both the epithelial egg tooth and TGM9. TGM3 and TGM6 evolved as regulators of cornification in hair follicles and underwent pseudogenization upon the evolutionary loss of hair in cetaceans. Taken together, this study reveals the gain and loss of vertebrate TGM genes in association with the evolution of cornified skin appendages and suggests an important role of TGM9 in the evolution of amniotes.
Collapse
Affiliation(s)
| | - Marta Surbek
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Julia Steinbinder
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Souci L, Denesvre C. Interactions between avian viruses and skin in farm birds. Vet Res 2024; 55:54. [PMID: 38671518 PMCID: PMC11055369 DOI: 10.1186/s13567-024-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.
Collapse
Affiliation(s)
- Laurent Souci
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France.
| |
Collapse
|
3
|
Hazrati R, Davaran S, Keyhanvar P, Soltani S, Alizadeh E. A Systematic Review of Stem Cell Differentiation into Keratinocytes for Regenerative Applications. Stem Cell Rev Rep 2024; 20:362-393. [PMID: 37922106 DOI: 10.1007/s12015-023-10636-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/05/2023]
Abstract
To improve wound healing or treatment of other skin diseases, and provide model cells for skin biology studies, in vitro differentiation of stem cells into keratinocyte-like cells (KLCs) is very desirable in regenerative medicine. This study examined the most recent advancements in in vitro differentiation of stem cells into KLCs, the effect of biofactors, procedures, and preparation for upcoming clinical cases. A range of stem cells with different origins could be differentiated into KLCs under appropriate conditions. The most effective ways of stem cell differentiation into keratinocytes were found to include the co-culture with primary epithelial cells and keratinocytes, and a cocktail of growth factors, cytokines, and small molecules. KLCs should also be supported by biomaterials for the extracellular matrix (ECM), which replicate the composition and functionality of the in vivo extracellular matrix (ECM) and, thus, support their phenotypic and functional characteristics. The detailed efficient characterization of different factors, and their combinations, could make it possible to find the significant inducers for stem cell differentiation into epidermal lineage. Moreover, it allows the development of chemically known media for directing multi-step differentiation procedures.In conclusion, the differentiation of stem cells to KLCs is feasible and KLCs were used in experimental, preclinical, and clinical trials. However, the translation of KLCs from in vitro investigational system to clinically valuable cells is challenging and extremely slow.
Collapse
Affiliation(s)
- Raheleh Hazrati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Peyman Keyhanvar
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Pasdeloup D, Chuard A, Rémy S, Courvoisier-Guyader K, Denesvre C. The pUL51 Tegument Protein Is Essential for Marek's Disease Virus Growth In Vitro and Bears a Function That Is Critical for Pathogenesis In Vivo. J Virol 2023; 97:e0024223. [PMID: 37154764 PMCID: PMC10231150 DOI: 10.1128/jvi.00242-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
pUL51 is a minor tegument protein important for viral assembly and cell-to-cell spread (CCS) but dispensable for replication in cell culture of all Herpesviruses for which its role has been investigated. Here, we show that pUL51 is essential for the growth of Marek's disease virus, an oncogenic alphaherpesvirus of chickens that is strictly cell-associated in cell culture. MDV pUL51 localized to the Golgi apparatus of infected primary skin fibroblasts, as described for other Herpesviruses. However, the protein was also observed at the surface of lipid droplets in infected chicken keratinocytes, hinting at a possible role of this compartment for viral assembly in the unique cell type involved in MDV shedding in vivo. Deletion of the C-terminal half of pUL51 or fusion of GFP to either the N- or C-terminus were sufficient to disable the protein's essential function(s). However, a virus with a TAP domain fused at the C-terminus of pUL51 was capable of replication in cell culture, albeit with viral spread reduced by 35% and no localization to lipid droplets. In vivo, we observed that although the replication of this virus was moderately impacted, its pathogenesis was strongly impaired. This study describes for the first time the essential role of pUL51 in the biology of a herpesvirus, its association to lipid droplets in a relevant cell type, and its unsuspected role in the pathogenesis of a herpesvirus in its natural host. IMPORTANCE Viruses usually spread from cell to cell through two mechanisms: cell-released virus and/or cell-to-cell spread (CCS). The molecular determinants of CCS and their importance in the biology of viruses during infection of their natural host are unclear. Marek's disease virus (MDV) is a deadly and highly contagious herpesvirus of chickens that produces no cell-free particles in vitro, and therefore, spreads only through CCS in cell culture. Here, we show that viral protein pUL51, an important factor for CCS of Herpesviruses, is essential for MDV growth in vitro. We demonstrate that the fusion of a large tag at the C-terminus of the protein is sufficient to moderately impair viral replication in vivo and almost completely abolish pathogenesis while only slightly reducing viral growth in vitro. This study thus uncovers a role for pUL51 associated with virulence, linked to its C-terminal half, and possibly independent of its essential functions in CCS.
Collapse
Affiliation(s)
- David Pasdeloup
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| | - Aurélien Chuard
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| | - Sylvie Rémy
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| | | | - Caroline Denesvre
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| |
Collapse
|
5
|
Establishment of a culture model for the prolonged maintenance of chicken feather follicles structure in vitro. PLoS One 2022; 17:e0271448. [PMID: 36206252 PMCID: PMC9544018 DOI: 10.1371/journal.pone.0271448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/30/2022] [Indexed: 11/05/2022] Open
Abstract
Protocols allowing the in vitro culture of human hair follicles in a serum free-medium up to 9 days were developed 30 years ago. By using similar protocols, we achieved the prolonged maintenance in vitro of juvenile feather follicles (FF) microdissected from young chickens. Histology showed a preservation of the FF up to 7 days as well as feather morphology compatible with growth and/or differentiation. The integrity of the FF wall epithelium was confirmed by transmission electron microscopy at Day 5 and 7 of culture. A slight elongation of the feathers was detected up to 5 days for 75% of the examined feathers. By immunochemistry, we demonstrated the maintenance of expression and localization of two structural proteins: scaffoldin and fibronectin. Gene expression (assessed by qRT-PCR) of NCAM, LCAM, Wnt6, Notch1, and BMP4 was not altered. In contrast, Shh and HBS1 expression collapsed, DKK3 increased, and KRT14 transiently increased upon cultivation. This indicates that cultivation modifies the mRNA expression of a few genes, possibly due to reduced growth or cell differentiation in the feather, notably in the barb ridges. In conclusion, we have developed the first method that allows the culture and maintenance of chicken FF in vitro that preserves the structure and biology of the FF close to its in vivo state, despite transcriptional modifications of a few genes involved in feather development. This new culture model may serve to study feather interactions with pathogens or toxics and constitutes a way to reduce animal experimentation.
Collapse
|
6
|
Ahmad M, Sun Y, Jia X, Li J, Zhang L, Yang Z, Lin Y, Zhang X, Khan ZA, Qian J, Luo Y. Therapeutic values of chick early amniotic fluid (ceAF) that facilitates wound healing via potentiating a SASP-mediated transient senescence. Genes Dis 2022; 9:1345-1356. [PMID: 35873014 PMCID: PMC9293714 DOI: 10.1016/j.gendis.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/24/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory, proliferative and remodeling phases constitute a cutaneous wound healing program. Therapeutic applications and medication are available; however, they commonly are comprised of fortified preservatives that might prolong the healing process. Chick early amniotic fluids (ceAF) contain native therapeutic factors with balanced chemokines, cytokines and growth-related factors; their origins in principle dictate no existence of harmful agents that would otherwise hamper embryo development. Instead, they possess a spectrum of molecules driving expeditious mitotic divisions and possibly exerting other functions. Employing both in vitro and in vivo models, we examined ceAF's therapeutic potentials in wound healing and found intriguing involvement of transient senescence, known to be intimately intermingled with Senescence Associated Secretory Phenotypes (SASP) that function in addition to or in conjunction with ceAF to facilitate wound healing. In our cutaneous wound healing models, a low dose of ceAF exhibited the best efficacies; however, higher doses attenuated the wound healing presumably by inducing p16 expression over a threshold. Our studies thus link an INK4/ARF locus-mediated signaling cascade to cutaneous wound healing, suggesting therapeutic potentials of ceAF exerting functions likely by driving transient senescence, expediting cellular proliferation, migration, and describing a homeostatic and balanced dosage strategy in medical intervention.
Collapse
Affiliation(s)
- Mashaal Ahmad
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Yandi Sun
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Xueyao Jia
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Jingjia Li
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Lihong Zhang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Ze Yang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Yindan Lin
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Xueyun Zhang
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Zara Ahmad Khan
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jin Qian
- Zhejiang HygeianCells BioMedical Co. Ltd., Hangzhou, Zhejiang 310000, PR China
| | - Yan Luo
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Key Laboratory of Cancer Prevention and Intervention of China National MOE, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
7
|
Abstract
The skin is a passive and active barrier which protects the body from the environment. Its health is essential for the accomplishment of this role. Since several decades, the skin has aroused a strong interest in various fields (for e.g. cell biology, medicine, toxicology, cosmetology, and pharmacology). In contrast to other organs, 3D models were mostly and directly elaborated in humans due to its architectural simplicity and easy accessibility. The development of these models benefited from the societal pressure to reduce animal experiments. In this review, we first describe human and mouse skin structure and the major differences with other mammals and birds. Next, we describe the different 3D human skin models and their main applications. Finally, we review the available models for domestic animals and discuss the current and potential applications.
Collapse
Affiliation(s)
- Laurent Souci
- ISP, INRAE, Université de Tours, Equipe BioVA, Centre Val de Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- ISP, INRAE, Université de Tours, Equipe BioVA, Centre Val de Loire, 37380, Nouzilly, France.
| |
Collapse
|
8
|
The Tegument Protein pUL47 of Marek's Disease Virus Is Necessary for Horizontal Transmission and Is Important for Expression of Glycoprotein gC. J Virol 2020; 95:JVI.01645-20. [PMID: 32999032 DOI: 10.1128/jvi.01645-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022] Open
Abstract
Viral tropism and transmission of herpesviruses are best studied in their natural host for maximal biological relevance. In the case of alphaherpesviruses, few reports have focused on those aspects, primarily because of the few animal models available as natural hosts that are compatible with such studies. Here, using Marek's disease virus (MDV), a highly contagious and deadly alphaherpesvirus of chickens, we analyze the role of tegument proteins pUL47 and pUL48 in the whole life cycle of the virus. We report that a virus lacking the UL48 gene (vΔUL48) is impaired in growth in cell culture and has diminished virulence in vivo In contrast, a virus lacking UL47 (vΔUL47) is unaffected in its growth in vitro and is as virulent in vivo as the wild-type (WT) virus. Surprisingly, we observed that vΔUL47 was unable to be horizontally transmitted to naive chickens, in contrast to the WT virus. In addition, we show that pUL47 is important for the splicing of UL44 transcripts encoding glycoprotein gC, a protein known as being essential for horizontal transmission of MDV. Importantly, we observed that the levels of gC are lower in the absence of pUL47. Notably, this phenotype is similar to that of another transmission-incompetent mutant ΔUL54, which also affects the splicing of UL44 transcripts. This is the first study describing the role of pUL47 in both viral transmission and the splicing and expression of gC.IMPORTANCE Host-to-host transmission of viruses is ideally studied in vivo in the natural host. Veterinary viruses such as Marek's disease virus (MDV) are, therefore, models of choice to explore these aspects. The natural host of MDV, the chicken, is small, inexpensive, and economically important. MDV is a deadly and contagious herpesvirus that can kill infected animals in less than 4 weeks. The virus naturally infects epithelial cells of the feather follicle epithelium from where it is shed into the environment. In this study, we demonstrate that the viral protein pUL47 is an essential factor for bird-to-bird transmission of the virus. We provide some molecular basis to this function by showing that pUL47 enhances the splicing and the expression of another viral gene, UL44, which is essential for viral transmission. pUL47 may have a similar function in human herpesviruses such as varicella-zoster virus or herpes simplex viruses.
Collapse
|
9
|
Yang H, Lee BR, Lee HC, Jung SK, Kim JY, No J, Shanmugam S, Jo YJ, Lee H, Hwang S, Byun SJ. Isolation and characterization of cultured chicken oviduct epithelial cells and in vitro validation of constructed ovalbumin promoter in these cells. Anim Biosci 2020; 34:1321-1330. [PMID: 33332940 PMCID: PMC8255889 DOI: 10.5713/ab.20.0627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Objective Transgenic hens hold a great promise to produce various valuable proteins. Through virus transduction into stage X embryo, the transgene expression under the control of constructed chicken ovalbumin promoters has been successfully achieved. However, a validation system that can evaluate differently developed ovalbumin promoters in in vitro, remains to be developed. Methods In the present study, chicken oviduct epithelial cells (cOECs) were isolated from oviduct tissue and shortly cultured with keratinocyte complete medium supplemented with chicken serum. The isolated cells were characterized with immunofluorescence, western blot, and flow cytometry using oviduct-specific marker. Chicken mutated ovalbumin promoter (Mut-4.4-kb-pOV) was validated in these cells using luciferase reporter analysis. Results The isolated cOECs revealed that the oviduct-specific marker, ovalbumin protein, was clearly detected by immunofluorescence, western blot, and flow cytometry analysis revealed that approximately 79.40% of the cells contained this protein. Also, luciferase reporter analysis showed that the constructed Mut-4.4-kb-pOV exhibited 7.1-fold (p<0.001) higher activity in the cOECs. Conclusion Collectively, these results demonstrate the efficient isolation and characterization of cOECs and validate the activity of the constructed ovalbumin promoter in the cultured cOECs. The in vitro validation of the recombinant promoter activity in cOECs can facilitate the production of efficient transgenic chickens for potential use as bioreactors.
Collapse
Affiliation(s)
- Hyeon Yang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Bo Ram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hwi-Cheul Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sun Keun Jung
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ji-Youn Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Jingu No
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sureshkumar Shanmugam
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Yong Jin Jo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Haesun Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
10
|
Tarsani E, Kranis A, Maniatis G, Avendano S, Hager-Theodorides AL, Kominakis A. Discovery and characterization of functional modules associated with body weight in broilers. Sci Rep 2019; 9:9125. [PMID: 31235723 PMCID: PMC6591351 DOI: 10.1038/s41598-019-45520-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Aim of the present study was to investigate whether body weight (BW) in broilers is associated with functional modular genes. To this end, first a GWAS for BW was conducted using 6,598 broilers and the high density SNP array. The next step was to search for positional candidate genes and QTLs within strong LD genomic regions around the significant SNPs. Using all positional candidate genes, a network was then constructed and community structure analysis was performed. Finally, functional enrichment analysis was applied to infer the functional relevance of modular genes. A total number of 645 positional candidate genes were identified in strong LD genomic regions around 11 genome-wide significant markers. 428 of the positional candidate genes were located within growth related QTLs. Community structure analysis detected 5 modules while functional enrichment analysis showed that 52 modular genes participated in developmental processes such as skeletal system development. An additional number of 14 modular genes (GABRG1, NGF, APOBEC2, STAT5B, STAT3, SMAD4, MED1, CACNB1, SLAIN2, LEMD2, ZC3H18, TMEM132D, FRYL and SGCB) were also identified as related to body weight. Taken together, current results suggested a total number of 66 genes as most plausible functional candidates for the trait examined.
Collapse
Affiliation(s)
- Eirini Tarsani
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece.
| | - Andreas Kranis
- Aviagen Ltd., Newbridge, Midlothian, EH28 8SZ, UK.,The Roslin Institute, University of Edinburgh, EH25 9RG, Midlothian, United Kingdom
| | | | | | - Ariadne L Hager-Theodorides
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Antonios Kominakis
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
11
|
Retinoic acid (RA) and bone morphogenetic protein 4 (BMP4) restore the germline competence of in vitro cultured chicken blastodermal cells. In Vitro Cell Dev Biol Anim 2019; 55:169-176. [DOI: 10.1007/s11626-019-00324-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/16/2019] [Indexed: 11/26/2022]
|
12
|
NANOG Is Required for the Long-Term Establishment of Avian Somatic Reprogrammed Cells. Stem Cell Reports 2018; 11:1272-1286. [PMID: 30318291 PMCID: PMC6235669 DOI: 10.1016/j.stemcr.2018.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/16/2023] Open
Abstract
Somatic reprogramming, which was first identified in rodents, remains poorly described in non-mammalian species. Here, we generated avian reprogrammed cells by reprogramming of chicken and duck primary embryonic fibroblasts. The efficient generation of long-term proliferating cells depends on the method of delivery of reprogramming factors and the addition of NANOG and LIN28 to the canonical OCT4, SOX2, KLF4, and c-MYC gene combination. The reprogrammed cells were positive for several key pluripotency-associated markers including alkaline phosphatase activity, telomerase activity, SSEA1 expression, and specific cell cycle and epigenetic markers. Upregulated endogenous pluripotency-associated genes included POU5F3 (POUV) and KLF4, whereas cells failed to upregulate NANOG and LIN28A. However, cells showed a tumorigenic propensity when injected into recipient embryos. In conclusion, although the somatic reprogramming process is active in avian primary cells, it needs to be optimized to obtain fully reprogrammed cells with similar properties to those of chicken embryonic stem cells. NANOG is required for avian somatic reprogramming NANOG is necessary for long-term establishment of avian reprogrammed cells Avian reprogrammed cells express pluripotency markers Avian cells are only partially reprogrammed
Collapse
|
13
|
Stadnicka K, Sławińska A, Dunisławska A, Pain B, Bednarczyk M. Molecular signatures of epithelial oviduct cells of a laying hen (Gallus gallus domesticus) and quail (Coturnix japonica). BMC DEVELOPMENTAL BIOLOGY 2018; 18:9. [PMID: 29614966 PMCID: PMC5883888 DOI: 10.1186/s12861-018-0168-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 03/21/2018] [Indexed: 12/30/2022]
Abstract
Background In this work we have determined molecular signatures of oviduct epithelial and progenitor cells. We have proposed a panel of selected marker genes, which correspond with the phenotype of oviduct cells of a laying hen (Gallus gallus domesticus) and quail (Coturnix japonica). We demonstrated differences in characteristics of those cells, in tissue and in vitro, with respect to different anatomical and functional parts of the oviduct (infundibulum (INF), distal magnum (DM, and proximal magnum (PM)). The following gene expression signatures were studied: (1) oviduct markers (estrogen receptor 1, ovalbumin, and SPINK7 - ovomucoid), (2) epithelial markers (keratin 5, keratin 14, and occludin) and (3) stem-like/progenitor markers (CD44 glycoprotein, LGR5, Musashi-1, and sex determining region Y-box 9, Nanog homebox, OCT4/cPOUV gene encoding transcription factor POU5F3). Results In chicken, the expression of oviduct markers increased toward the proximal oviduct. Epithelial markers keratin14 and occludin were high in distal oviduct and decreased toward the proximal magnum. In quail oviduct tissue, the gene expression pattern of oviduct/epithelial markers was similar to chicken. The markers of progenitors/stemness in hen oviduct (Musashi-1 and CD44 glycoprotein) had the highest relative expression in the infundibulum and decreased toward the proximal magnum. In quail, we found significant expression of four progenitor markers (LGR5 gene, SRY sex determining region Y-box 9, OCT4/cPOUV gene, and CD44 glycoprotein) that were largely present in the distal oviduct. After in vitro culture of oviduct cells, the gene expression pattern has changed. High secretive potential of magnum-derived cells diminished by using decreased abundance of mRNA. On the other hand, chicken oviduct cells originating from the infundibulum gained ability to express OVM and OVAL. Epithelial character of the cells was maintained in vitro. Among progenitor markers, both hen and quail cells expressed high level of SOX9, LGR5 and Musashi-1. Conclusion Analysis of tissue material revealed gradual increase/decrease pattern in majority of the oviduct markers in both species. This pattern changed after the oviductal cells have been cultured in vitro. The results can provide molecular tools to validate the phenotype of in vitro biological models from reproductive tissue. Electronic supplementary material The online version of this article (10.1186/s12861-018-0168-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Stadnicka
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Anna Sławińska
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Aleksandra Dunisławska
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Bertrand Pain
- University of Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Marek Bednarczyk
- Department of Animal Biochemistry and Biotechnology, UTP University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
14
|
Komori T, Ono M, Hara ES, Ueda J, Nguyen HTT, Nguyen HT, Yonezawa T, Maeba T, Kimura-Ono A, Takarada T, Momota R, Maekawa K, Kuboki T, Oohashi T. Type IV collagen α6 chain is a regulator of keratin 10 in keratinization of oral mucosal epithelium. Sci Rep 2018; 8:2612. [PMID: 29422532 PMCID: PMC5805778 DOI: 10.1038/s41598-018-21000-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/15/2018] [Indexed: 11/25/2022] Open
Abstract
Keratinized mucosa is of fundamental importance to maintain healthy gingival tissue, and understanding the mechanisms of oral mucosa keratinization is crucial to successfully manage healthy gingiva. Previous studies have shown a strong involvement of the basement membrane in the proliferation and differentiation of epithelial cells. Therefore, first, to identify the keratinized mucosa-specific basement membrane components, immunohistochemical analysis for the six alpha chains of type IV collagen was performed in 8-week-old mice. No difference in the expression pattern of type IV collagen α1(IV) and α2(IV) chains was observed in the keratinized and non-keratinized mucosa. Interestingly, however, type IV collagen α5(IV) and α6(IV) chains specifically were strongly detected in the keratinized mucosa. To analyze the functional roles of the type IV collagen isoform α6(IV) in oral mucosa keratinization, we analyzed Col4a6-knockout mice. Epithelial developmental delay and low levels of KRT10 were observed in new-born Col4a6-knockout mice. Additionally, in vitro experiments with loss-of function analysis using human gingival epithelial cells confirmed the important role of α6(IV) chain in epithelial keratinization. These findings indicate that α112:α556 (IV) network, which is the only network that includes the α6(IV) chain, is one regulator of KRT10 expression in keratinization of oral mucosal epithelium.
Collapse
Affiliation(s)
- Taishi Komori
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan.
| | - Emilio Satoshi Hara
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Junji Ueda
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Ha Thi Thu Nguyen
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Ha Thi Nguyen
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Takahiro Maeba
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Aya Kimura-Ono
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Ryusuke Momota
- Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Kenji Maekawa
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| |
Collapse
|
15
|
Vautherot JF, Jean C, Fragnet-Trapp L, Rémy S, Chabanne-Vautherot D, Montillet G, Fuet A, Denesvre C, Pain B. ESCDL-1, a new cell line derived from chicken embryonic stem cells, supports efficient replication of Mardiviruses. PLoS One 2017; 12:e0175259. [PMID: 28406989 PMCID: PMC5391029 DOI: 10.1371/journal.pone.0175259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Marek’s disease virus is the etiological agent of a major lymphoproliferative disorder in poultry and the prototype of the Mardivirus genus. Primary avian somatic cells are currently used for virus replication and vaccine production, but they are largely refractory to any genetic modification compatible with the preservation of intact viral susceptibility. We explored the concept of induction of viral replication permissiveness in an established pluripotent chicken embryonic stem cell-line (cES) in order to derive a new fully susceptible cell-line. Chicken ES cells were not permissive for Mardivirus infection, but as soon as differentiation was triggered, replication of Marek’s disease virus was detected. From a panel of cyto-differentiating agents, hexamethylene bis (acetamide) (HMBA) was found to be the most efficient regarding the induction of permissiveness. These initial findings prompted us to analyse the effect of HMBA on gene expression, to derive a new mesenchymal cell line, the so-called ESCDL-1, and monitor its susceptibility for Mardivirus replication. All Mardiviruses tested so far replicated equally well on primary embryonic skin cells and on ESCDL-1, and the latter showed no variation related to its passage number in its permissiveness for virus infection. Viral morphogenesis studies confirmed efficient multiplication with, as in other in vitro models, no extra-cellular virus production. We could show that ESCDL-1 can be transfected to express a transgene and subsequently cloned without any loss in permissiveness. Consequently, ESCDL-1 was genetically modified to complement viral gene deletions thus yielding stable trans-complementing cell lines. We herein claim that derivation of stable differentiated cell-lines from cES cell lines might be an alternative solution to the cultivation of primary cells for virology studies.
Collapse
Affiliation(s)
| | - Christian Jean
- Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | | | - Sylvie Rémy
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | | | - Guillaume Montillet
- Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Aurélie Fuet
- Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Caroline Denesvre
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, Nouzilly, France
| | - Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| |
Collapse
|
16
|
Tang X, Xu S, Zhang H, Chen Q, Li R, Wu W, Yu M, Liu H. Retinoic acid promotes expression of germline-specific genes in chicken blastoderm cells by stimulating Smad1/5 phosphorylation in a feeder-free culture system. BMC Biotechnol 2017; 17:17. [PMID: 28219352 PMCID: PMC5319176 DOI: 10.1186/s12896-017-0332-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 02/07/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Producing transgenic chickens with chicken blastodermal cells (cBCs) is inefficient due to the extremely low germline transmission capacity of cBCs. As chicken primordial germ cells (PGCs) have been reported as an efficient method for producing transgenic chickens, the inefficiency of cBCs could potentially be resolved by inducing them to differentiate into germ cells. However, whether chemical inducers are able to enhance cBCs germline competence in vitro is unknown and the molecular mechanisms of differentiation of chicken pluripotent cells into germ cells are poorly understood. RESULTS We cultured cBCs with a monolayer morphology in E8 medium, a xeno- and feeder-free medium. We showed that retinoic acid (RA) treatment increased expression of germ cell-specific genes in cBCs. Using western blot, we determined that RA stimulated Smad1/5 phosphorylation. Moreover, Smad1/5 activation regulates the expression of germ cell-specific genes, as co-treatment with a Smad1/5 phosphorylation inhibitor or activator alters expression of these genes. We also demonstrate that Smad1/5 is required for RA-induced differentiation by RNA interference knockdown. CONCLUSION Our results demonstrated that E8 medium is able to maintain cBC growth for weeks and RA treatment induced germ cell differentiation of cBCs through the BMP-Smad1/5 signaling pathway.
Collapse
Affiliation(s)
- Xiaochuan Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Shiyong Xu
- College of Animal Science and Technology, Jingling Institute of Technology, Nanjing, 210095 People’s Republic of China
| | - Hongpeng Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Qing Chen
- College of Animal Science and Technology, Jingling Institute of Technology, Nanjing, 210095 People’s Republic of China
| | - Rongyang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Minli Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
17
|
Wang X, Wang Y, Zuo Q, Li D, Zhang W, Lian C, Tang B, Xiao T, Wang M, Wang K, Li B, Zhang Y. The synergistic effect of 5Azadc and TSA on maintenance of pluripotency of chicken ESCs by overexpression of NANOG gene. In Vitro Cell Dev Biol Anim 2016; 52:488-96. [PMID: 26822431 DOI: 10.1007/s11626-015-9993-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/20/2015] [Indexed: 11/30/2022]
Abstract
NANOG is a transcription factor that functions in embryonic stem cells (ESCs) and a key factor in maintaining pluripotency. Here, we cloned the NANOG gene promoter from the Rugao yellow chicken and constructed a dual luciferase reporter vector to detect its transcriptional activity and analyze the effects of 5-aza-2'-deoxycytidine (5-Azadc) and trichostatin A (TSA) on NANOG promoter activity and ESC pluripotency maintenance in vitro. NANOG transcriptional activity was enhanced when 5-Azadc and TSA were used alone or together, suggesting the possibility of elevated methylation of the CpG island in the NANOG regulatory region. When ESCs were cultured in basic medium with 5-Azadc and TSA in vitro, significantly more cell colonies were maintained in the 5-Azadc + TSA group than in the control group, which had many differentiated cells and few cell colonies after 6 d of induction. On the tenth day of induction, the cells in the control group fully differentiated and no cell colonies remained, but many cell colonies were present in the 5-Azadc + TSA group. The expression of NANOG in the cell colonies was confirmed by indirect immunofluorescence. Furthermore, ESCs could be passaged to the 12th generation under 5-Azadc and TSA treatment and maintained their pluripotency. Thus, we showed that 5-Azadc and TSA can effectively maintain chicken ESC pluripotency in vitro by increasing NANOG gene expression.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Yingjie Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Dong Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Wenhui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Chao Lian
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Beibei Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Tianrong Xiao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Man Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Kehua Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, Jiangsu Province, People's Republic of China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China. .,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| | - Yani Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China. .,Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
18
|
Couteaudier M, Courvoisier K, Trapp-Fragnet L, Denesvre C, Vautherot JF. Keratinocytes derived from chicken embryonic stem cells support Marek's disease virus infection: a highly differentiated cell model to study viral replication and morphogenesis. Virol J 2016; 13:7. [PMID: 26742789 PMCID: PMC4705758 DOI: 10.1186/s12985-015-0458-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/23/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Marek's disease is a virus disease with worldwide distribution that causes major losses to poultry production. Vaccines against Marek's disease virus, an oncogenic alphaherpesvirus, reduce tumour formation but have no effect on virus shedding. Successful horizontal virus transmission is linked to the active viral replication in feather follicle epithelial cells of infected chickens, from which infectious viral particles are shed into the environment. The feather follicle epithelium is the sole tissue in which those infectious particles are produced and no in vitro cell-systems can support this highly efficient morphogenesis. We previously characterized embryonic stem-cell-derived keratinocytes, showing they display a marker-gene profile similar to skin keratinocytes, and therefore we tested their susceptibility to Marek's disease virus infection. FINDINGS We show herein that keratinocytes derived from chicken embryonic stem-cells are fully permissive to the replication of either non-pathogenic or pathogenic Marek's disease viruses. All viruses replicated on all three keratinocyte lines and kinetics of viral production as well as viral loads were similar to those obtained on primary cells. Morphogenesis studies were conducted on infected keratinocytes and on corneocytes, showing that all types of capsids/virions were present inside the cells, but extracellular viruses were absent. CONCLUSIONS The keratinocyte lines are the first epithelial cell-line showing ectodermal specific markers supporting Marek's disease virus replication. In this in vitro model the replication lead to the production of cell-associated viral progeny. Further work will be devoted to the study of relationship between 3D differentiation of keratinocytes and Marek's disease virus replication.
Collapse
Affiliation(s)
- Mathilde Couteaudier
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Katia Courvoisier
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Laetitia Trapp-Fragnet
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Caroline Denesvre
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Jean-François Vautherot
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| |
Collapse
|