1
|
Kittipibul T, Dalin CP, Masoudi A, Zheng J, Deng SX. Advances in the Diagnosis and Management of Limbal Stem Cell Deficiency. Cornea 2025; 44:405-411. [PMID: 39729420 PMCID: PMC11875906 DOI: 10.1097/ico.0000000000003775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/05/2024] [Indexed: 12/29/2024]
Abstract
ABSTRACT This concise review focuses on the latest advancements in the diagnosis and management of limbal stem cell deficiency (LSCD). Ensuring the standard of care for individuals affected by LSCD involves the crucial task for physicians to meticulously and accurately diagnose the condition and determine its specific stage. A standardized diagnostic approach forms the foundation for formulating and delivering customized therapeutic interventions to maximize treatment outcomes for each patient. In this review, we introduce a systematic diagnostic algorithm to guide the assessment of LSCD. In addition, the current management algorithm and emerging therapies for LSCD are summarized.
Collapse
Affiliation(s)
- Thanachaporn Kittipibul
- Department of Ophthalmology, Center of Excellence for Cornea and Stem Cell Transplantation, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Ophthalmology, Excellence Center for Cornea and Stem Cell Transplantation, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chea Piseth Dalin
- Ophthalmology Unit, Calmette Hospital, Phnom Penh, Kingdom of Cambodia
| | - Ali Masoudi
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jie Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Sophie X Deng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA
- Molecular Biology Institute, University of California, Los Angeles, CA
| |
Collapse
|
2
|
Wang L, Nie X, Wei Y, Chen Q, Sun Y, Zhao X, Xu X, Liu W, Liang Q. 3D printed biomimetic bilayer limbal implants for regeneration of the corneal structure in limbal stem cell deficiency. Acta Biomater 2025; 193:157-170. [PMID: 39798638 DOI: 10.1016/j.actbio.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant. Encapsulated CECs and CSSCs maintained viability and proliferative activity in the bilayer limbal implant. In vivo, both CEC-loaded and CEC/CSSC-loaded hydrogel could repair the corneal surface in the LSCD model effectively. Notably, the corneal epithelial healing was faster, and corneal opacity and neovascularization were minimal in CEC/CSSC-loaded group. These findings highlight the feasibility of 3D printing in limbal construction, providing CEC/CSSC-loaded limbal implants as a treatment strategy for LSCD and corneal blindness. STATEMENT OF SIGNIFICANCE: This study aimed to enhance the long-term prognosis of limbal epithelial cell transplantation in patients with limbal stem cell deficiency by developing a 3D limbal implant that encapsulates corneal epithelial cells and limbal niche cells simultaneously. The 3D printed implant offers the advantages of mimicking the natural layered limbal structure and were found to enhance the regenerative capacity of corneal epithelial cells, suppress inflammation, and alleviate corneal scarring in vivo. This study highlights the importance of limbal microenvironment remodeling in the treatment of limbal stem cell deficiency and the potential of 3D printing in the treatment of corneal diseases.
Collapse
Affiliation(s)
- Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Xiongfeng Nie
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Yage Sun
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xinrui Zhao
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China.
| |
Collapse
|
3
|
Wang L, Xu X, Chen Q, Wei Y, Wei Z, Jin ZB, Liang Q. Extracellular Vesicle MicroRNAs From Corneal Stromal Stem Cell Enhance Stemness of Limbal Epithelial Stem Cells by Targeting the Notch Pathway. Invest Ophthalmol Vis Sci 2023; 64:42. [PMID: 37768272 PMCID: PMC10541724 DOI: 10.1167/iovs.64.12.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Purpose The limbal niche supports the self-renewal of limbal epithelial stem cells (LESCs). The corneal stromal stem cell (CSSC) is an important component in the niche that regulates the LESC phenotype. However, the intercellular communication between LESCs and CSSCs has yet to be elucidated. Methods A traditional two-dimensional (2D) system, a direct three-dimensional (3D) system, and an indirect 3D coculture system of LESCs and CSSCs were used to elucidate the paracrine pathway effect of CSSCs on LESCs. To reveal the impact of CSSC derived extracellular vesicles (CSSC-EVs) on LESCs, GW4869 and CSSC-EVs were added separately to the LESC culture medium. The outgrowth rate, cell density, differentiation, and stemness maintenance were compared among these methods. The miRNAs in the CSSC-EVs were sequenced, and the targeted Notch pathway was further confirmed by RT‒qPCR and Western blotting. Results Compared with 2D culture, both the direct and indirect 3D coculture systems yielded a higher outgrowth rate and expression of stem cell markers of LESCs. The phenotypes of LESCs cultivated using the two coculture approaches were also comparable. Nevertheless, GW4869 inhibited the effect of CSSCs on LESCs, and the addition of CSSC-EVs to the 2D culture system could increase cell density, and the proportion of p63αbright cells, which indicated that CSSC-EVs were crucial in regulating LESCs. Furthermore, the EV-AlixKD with reduced miRNA partly lost its regulating function. The abundant miRNAs in CSSC-EVs, such as hsa-miR-663b, hsa-miR-16-5p, and hsa-miR-1290, target the Notch pathway. The LESCs transfected with miR-663b had higher p63 expression via downregulating of the Notch pathway. Conclusions CSSC-EV played an important role in promoting LESC proliferation and stemness maintenance by targeting Notch signaling via miRNAs, which will increase our understanding of the limbal niche and provide a potential new approach for LESC culture and the treatment of corneal epithelial disorders.
Collapse
Affiliation(s)
- Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Soleimani M, Cheraqpour K, Koganti R, Baharnoori SM, Djalilian AR. Concise Review: Bioengineering of Limbal Stem Cell Niche. Bioengineering (Basel) 2023; 10:111. [PMID: 36671683 PMCID: PMC9855097 DOI: 10.3390/bioengineering10010111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The corneal epithelium is composed of nonkeratinized stratified squamous cells and has a significant turnover rate. Limbal integrity is vital to maintain the clarity and avascularity of the cornea as well as regeneration of the corneal epithelium. Limbal epithelial stem cells (LESCs) are located in the basal epithelial layer of the limbus and preserve this homeostasis. Proper functioning of LESCs is dependent on a specific microenvironment, known as the limbal stem cell niche (LSCN). This structure is made up of various cells, an extracellular matrix (ECM), and signaling molecules. Different etiologies may damage the LSCN, leading to limbal stem cell deficiency (LSCD), which is characterized by conjunctivalization of the cornea. In this review, we first summarize the basics of the LSCN and then focus on current and emerging bioengineering strategies for LSCN restoration to combat LSCD.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
The progress in techniques for culturing human limbal epithelial stem cells. Hum Cell 2023; 36:1-14. [PMID: 36181663 DOI: 10.1007/s13577-022-00794-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023]
Abstract
In vitro culture of human limbal epithelial stem cells (hLESCs) is crucial to cell therapy in the treatment of limbal stem cell deficiency, a potentially vision-threatening disease that is characterized by persistent corneal epithelial defects and corneal epithelium conjunctivalization. Traditionally, hLESCs are cultivated based on either limbal tissue explants or single-cell suspensions in culture media containing xenogenous components, such as fetal bovine serum and murine 3T3 feeder cells. Plastic culture dishes and human amniotic membranes are classical growth substrates used in conventional hLESC culture systems. The past few decades have witnessed considerable progress and innovations in hLESC culture techniques to ensure a higher level of biosafety and lower immunogenicity for further cell treatment, including complete removal of xenogenous components from culture media, the application of human-derived feeder cells, and the development of novel scaffolds. Three-dimensional artificial niches and three-dimensional culture techniques have also been established to simulate the real microenvironment of limbal crypts for better cell outgrowth and proliferation. All these progresses ensure that in vitro cultured hLESCs are more adaptable to translational stem cell therapy for limbal stem cell deficiency.
Collapse
|
6
|
Masood F, Chang JH, Akbar A, Song A, Hu WY, Azar DT, Rosenblatt MI. Therapeutic Strategies for Restoring Perturbed Corneal Epithelial Homeostasis in Limbal Stem Cell Deficiency: Current Trends and Future Directions. Cells 2022; 11:3247. [PMID: 36291115 PMCID: PMC9600167 DOI: 10.3390/cells11203247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 02/03/2023] Open
Abstract
Limbal stem cells constitute an important cell population required for regeneration of the corneal epithelium. If insults to limbal stem cells or their niche are sufficiently severe, a disease known as limbal stem cell deficiency occurs. In the absence of functioning limbal stem cells, vision-compromising conjunctivalization of the corneal epithelium occurs, leading to opacification, inflammation, neovascularization, and chronic scarring. Limbal stem cell transplantation is the standard treatment for unilateral cases of limbal stem cell deficiency, but bilateral cases require allogeneic transplantation. Herein we review the current therapeutic utilization of limbal stem cells. We also describe several limbal stem cell markers that impact their phenotype and function and discuss the possibility of modulating limbal stem cells and other sources of stem cells to facilitate the development of novel therapeutic interventions. We finally consider several hurdles for widespread adoption of these proposed methodologies and discuss how they can be overcome to realize vision-restoring interventions.
Collapse
Affiliation(s)
- Faisal Masood
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Anosh Akbar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amy Song
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dimitri T. Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Tan Y, Chen D, Wang Y, Wang W, Xu L, Liu R, You C, Li G, Zhou H, Li D. Limbal Bio-engineered Tissue Employing 3D Nanofiber-Aerogel Scaffold to Facilitate LSCs Growth and Migration. Macromol Biosci 2022; 22:e2100441. [PMID: 35020979 DOI: 10.1002/mabi.202100441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Constrained by the existing scaffold inability to mimic limbal niche, limbal bio-engineered tissue constructed in vitro is challenging to be widely used in clinical practice. Here, 3D nanofiber-aerogel scaffold was fabricated by employing thermal cross-linking electrospinned film Polycaprolactone (PCL) and gelatin (GEL) as the precursor. Benefiting from the cross-linked (160°C, vacuum) structure, the homogenized and lyophilized 3D nanofiber-aerogel scaffold with preferable mechanical strength was capable of refraining the volume collapse in humid vitro. Intriguingly, compared with traditional electrospinning scaffolds, our 3D nanofiber-aerogel scaffolds possessed enhanced water absorption (1100%-1300%), controllable aperture (50-100 μm) and excellent biocompatibility (optical density value, 0.953 ± 0.021). The well-matched aperture and nanostructure of the scaffolds with cells enabled the construction of limbal bio-engineered tissue. It is foreseen that the proposed general method could be extended to various aerogels, providing new opportunities for the development of novel limbal bio-engineered tissue. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yongyao Tan
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dan Chen
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunming Wang
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Wang
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lingjuan Xu
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rong Liu
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunxiu You
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guigang Li
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huamin Zhou
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dequn Li
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Robertson SYT, Roberts JS, Deng SX. Regulation of Limbal Epithelial Stem Cells: Importance of the Niche. Int J Mol Sci 2021; 22:11975. [PMID: 34769405 PMCID: PMC8584795 DOI: 10.3390/ijms222111975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Limbal epithelial stem/progenitor cells (LSCs) reside in a niche that contains finely tuned balances of various signaling pathways including Wnt, Notch, BMP, Shh, YAP, and TGFβ. The activation or inhibition of these pathways is frequently dependent on the interactions of LSCs with various niche cell types and extracellular substrates. In addition to receiving molecular signals from growth factors, cytokines, and other soluble molecules, LSCs also respond to their surrounding physical structure via mechanotransduction, interaction with the ECM, and interactions with other cell types. Damage to LSCs or their niche leads to limbal stem cell deficiency (LSCD). The field of LSCD treatment would greatly benefit from an understanding of the molecular regulation of LSCs in vitro and in vivo. This review synthesizes current literature around the niche factors and signaling pathways that influence LSC function. Future development of LSCD therapies should consider all these niche factors to achieve improved long-term restoration of the LSC population.
Collapse
Affiliation(s)
| | | | - Sophie X. Deng
- Jules Stein Eye Institute, University of California, Los Angeles, CA 94143, USA; (S.Y.T.R.); (J.S.R.)
| |
Collapse
|
9
|
Bonnet C, González S, Roberts JS, Robertson SYT, Ruiz M, Zheng J, Deng SX. Human limbal epithelial stem cell regulation, bioengineering and function. Prog Retin Eye Res 2021; 85:100956. [PMID: 33676006 PMCID: PMC8428188 DOI: 10.1016/j.preteyeres.2021.100956] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
The corneal epithelium is continuously renewed by limbal stem/progenitor cells (LSCs), a cell population harbored in a highly regulated niche located at the limbus. Dysfunction and/or loss of LSCs and their niche cause limbal stem cell deficiency (LSCD), a disease that is marked by invasion of conjunctival epithelium into the cornea and results in failure of epithelial wound healing. Corneal opacity, pain, loss of vision, and blindness are the consequences of LSCD. Successful treatment of LSCD depends on accurate diagnosis and staging of the disease and requires restoration of functional LSCs and their niche. This review highlights the major advances in the identification of potential LSC biomarkers and components of the LSC niche, understanding of LSC regulation, methods and regulatory standards in bioengineering of LSCs, and diagnosis and staging of LSCD. Overall, this review presents key points for researchers and clinicians alike to consider in deepening the understanding of LSC biology and improving LSCD therapies.
Collapse
Affiliation(s)
- Clémence Bonnet
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA; Cornea Department, Paris University, Cochin Hospital, AP-HP, F-75014, Paris, France
| | - Sheyla González
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - JoAnn S Roberts
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sarah Y T Robertson
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Maxime Ruiz
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Jie Zheng
- Basic Science Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA
| | - Sophie X Deng
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Rashid M, Shah SG, Natu A, Verma T, Rauniyar S, Gera PB, Gupta S. RPS13, a potential universal reference gene for normalisation of gene expression in multiple human normal and cancer tissue samples. Mol Biol Rep 2021; 48:7967-7974. [PMID: 34657252 DOI: 10.1007/s11033-021-06828-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Reference genes are considered stable genes and are used for normalizing the gene expression profile across different cell types; as well as, in normal and diseased samples. However, these gene associates with different biological processes, and hence expression vary in different pathological conditions. Therefore, in the present study, eight different reference genes were used and compared to identify common reference gene usable for an array of different cell types and human cancers. METHODS AND RESULTS The expression stability of the eight reference genes across eleven normal and cancerous tissues was confirmed through real time-qPCR. Ribosomal protein S13 (RPS13) was found to be a common and stable reference gene across intra- and inter-comparison between various normal and tumor tissue types. Further, TCGA data analysis across and between normal and tumor tissue types also showed minimum deviation in expression of RPS13 gene out of eight routinely used reference genes. CONCLUSION RPS13 is the common stable reference gene in normalization for gene expression based analysis in cancer research.
Collapse
Affiliation(s)
- Mudasir Rashid
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sanket Girish Shah
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Abhiram Natu
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Tripti Verma
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sukanya Rauniyar
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Poonam B Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, MH, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India.
| |
Collapse
|
11
|
Romo-Valera C, Pérez-Garrastachu M, Hernáez-Moya R, Rodriguez-Astigarraga M, Romano-Ruiz P, Etxebarria J, Arluzea J, Andollo N. Characterisation of corneas following different time and storage methods for their use as a source of stem-like limbal epithelial cells. Exp Eye Res 2021; 211:108720. [PMID: 34389315 DOI: 10.1016/j.exer.2021.108720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
The transplantation of expansions of limbal epithelial stem cells (LESC) remains one of the most efficient therapies for the treatment of limbal stem cell deficiency (LSCD) to date. However, the available donor corneas are scarce, and the corneas conserved for long time, under hypothermic conditions (after 7 days) or in culture (more than 28 days), are usually discarded due to poor viability of the endothelial cells. To establish an objective criterion for the utilisation or discarding of corneas as a source of LESC, we characterized, by immunohistochemistry analysis, donor corneas conserved in different conditions and for different periods of time. We also studied the potency of LESCs isolated from these corneas and maintained in culture up to 3 cell passages. We hoped that the study of markers of LESCs present in both the corneoscleral histological sections and the cell cultures would show the adequacy of the methods used for cell isolation and how fit the LESC enrichment of the obtained cell populations to be expanded was. Thus, the expressions of markers of the cells residing in the human limbal and corneal epithelium (cytokeratin CK15 and CK12, vimentin, Collagen VII, p63α, ABCG2, Ki67, Integrin β4, ZO1, and melan A) were analysed in sections of corneoscleral tissues conserved in hypothermic conditions for 2-9 days with post-mortem time (pmt) < 8 h or for 1 day with pmt > 16 h, and in sclerocorneal rims maintained in an organ culture medium for 29 days. Cell populations isolated from donor corneoscleral tissues were also assessed based on these markers to verify the adequacy of isolation methods and the potential of expanding LESCs from these tissues. Positivity for several putative stem cell markers such as CK15 and p63α was detected in all corneoscleral tissues, although a decrease was recorded in the ones conserved for longer times. The barrier function and the ability to adhere to the extracellular matrix were maintained in all the analysed tissues. In limbal epithelial cell cultures, a simultaneous decrease in the melan A melanocyte marker and the putative stem cell markers was detected, suggesting a close relationship between the melanocytes and the limbal stem cells of the niche. Holoclones stained with putative stem cell markers were obtained from long-term, hypothermic, stored sclerocorneal rims. The results showed that the remaining sclerocorneal rims after corneal transplantation, which were conserved under hypothermic conditions for up to 7 days and would have been discarded at a first glance, still maintained their potential as a source of LESC cultures.
Collapse
Affiliation(s)
- Cristina Romo-Valera
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Miguel Pérez-Garrastachu
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Raquel Hernáez-Moya
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Maddalen Rodriguez-Astigarraga
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Paula Romano-Ruiz
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Jaime Etxebarria
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain; Department of Ophthalmology, University Hospital of Cruces, Cruces Plaza S/N, 48903, Barakaldo, Spain; BioCruces Bizkaia Health Research Institute, Begiker, Cruces Plaza S/N, 48903, Barakaldo, Spain
| | - Jon Arluzea
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country, Sarriena, S/N, 48940, Leioa, Spain; BioCruces Bizkaia Health Research Institute, Begiker, Cruces Plaza S/N, 48903, Barakaldo, Spain.
| |
Collapse
|
12
|
Bonnet C, Roberts JS, Deng SX. Limbal stem cell diseases. Exp Eye Res 2021; 205:108437. [PMID: 33571530 PMCID: PMC8044031 DOI: 10.1016/j.exer.2021.108437] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/14/2020] [Accepted: 01/02/2021] [Indexed: 12/13/2022]
Abstract
The function of limbal stem/progenitor cells (LSCs) is critical to maintain corneal epithelial homeostasis. Many external insults and intrinsic defects can be deleterious to LSCs and their niche microenvironment, resulting in limbal stem cell dysfunction or deficiency (LSCD). Ocular comorbidities, frequent in eyes with LSCD, can exacerbate the dysfunction of residual LSCs, and limit the survival of transplanted LSCs. Clinical presentation and disease evolution vary among different etiologies of LSCD. New ocular imaging modalities and molecular markers are now available to standardize the diagnosis criteria and stage the severity of the disease. Medical therapies may be sufficient to reverse the disease if residual LSCs are present. A stepwise approach should be followed to optimize the ocular surface, eliminate the causative factors and treat comorbid conditions, before considering surgical interventions. Furthermore, surgical options are selected depending on the severity and laterality of the disease. The standardized diagnostic criteria to stage the disease is necessary to objectively evaluate and compare the efficacy of the emerging customized therapies.
Collapse
Affiliation(s)
- Clémence Bonnet
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Cornea Department, Paris University, Cochin Hospital, AP-HP, F-75014, Paris, France.
| | - JoAnn S Roberts
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Sophie X Deng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Lee H, Lee JH, Hong S, Sunwoo JH, Kim HT, Kim ES, Kim JY, Hwang C, Tchah H. Transplantation of human corneal limbal epithelial cell sheet harvested on synthesized carboxymethyl cellulose and dopamine in a limbal stem cell deficiency. J Tissue Eng Regen Med 2020; 15:139-149. [PMID: 33210832 DOI: 10.1002/term.3159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
This study aimed to evaluate the efficacy and safety of transplantation with human corneal limbal epithelial (HCLE) cell sheets cultured on carboxymethyl cellulose (CMC)-dopamine (DA)-coated substrates and harvested via enzymatic digestion of CMC with cellulase in a rabbit animal model of limbal stem cell deficiency (LSCD). Synthesized CMC-DA was pretreated onto the surface of culture plates. Then, HCLE cells were cultured on precoated CMC-DA and HCLE cell sheets were harvested using cellulase-containing cell culture medium. HCLE cell sheets were evaluated using a live/dead assay, histological examination, and immunofluorescence staining. For in vivo assessment, HCLE cell sheets were transplanted in a rabbit model of LSCD for 2 weeks to determine the effectiveness of the repair. Primary culture of HCLE cells stained positively for p63, cytokeratin (CK)15, and CK12. HCLE cell sheets were generated with a well-preserved morphology and transparency ranging in size from 15 to 19 mm after cellulase-assisted cell sheet generation. HCLE cell sheets uniformly stained positively for human mitochondria, p63, CK15, CK12, CK3/2p, and zonula occludens (ZO)-1. HCLE cell sheet transplantation in a rabbit model of LSCD improved the corneal opacity and neovascularization scores. Transplanted HCLE cell sheets stained positively for p63 and CK12. Transplantation of HCLE cell sheets harvested on CMC-DA coating combined with cellulase is a safe and efficient procedure for corneal epithelial regeneration in a rabbit model of LSCD. This system could enable a promising strategy to regenerate corneal epithelium by transplantation in ocular surface disorders.
Collapse
Affiliation(s)
- Hun Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Hyuck Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soyoung Hong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Jeong Hye Sunwoo
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Tae Kim
- Department of Ophthalmology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Eun-Soon Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hungwon Tchah
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Hernáez-Moya R, González S, Urkaregi A, Pijoan JI, Deng SX, Andollo N. Expansion of Human Limbal Epithelial Stem/Progenitor Cells Using Different Human Sera: A Multivariate Statistical Analysis. Int J Mol Sci 2020; 21:ijms21176132. [PMID: 32854428 PMCID: PMC7503296 DOI: 10.3390/ijms21176132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Transplantation of human cultured limbal epithelial stem/progenitor cells (LESCs) has demonstrated to restore the integrity and functionality of the corneal surface in about 76% of patients with limbal stem cell deficiency. However, there are different protocols for the expansion of LESCs, and many of them use xenogeneic products, being a risk for the patients’ health. We compared the culture of limbal explants on the denuded amniotic membrane in the culture medium—supplemental hormone epithelial medium (SHEM)—supplemented with FBS or two differently produced human sera. Cell morphology, cell size, cell growth rate, and the expression level of differentiation and putative stem cell markers were examined. Several bioactive molecules were quantified in the human sera. In a novel approach, we performed a multivariate statistical analysis of data to investigate the culture factors, such as differently expressed molecules of human sera that specifically influence the cell phenotype. Our results showed that limbal cells cultured with human sera grew faster and contained similar amounts of small-sized cells, higher expression of the protein p63α, and lower of cytokeratin K12 than FBS cultures, thus, maintaining the stem/progenitor phenotype of LESCs. Furthermore, the multivariate analysis provided much data to better understand the obtaining of different cell phenotypes as a consequence of the use of different culture methodologies or different culture components.
Collapse
Affiliation(s)
- Raquel Hernáez-Moya
- Department of Cell Biology and Histology, School of Medicine and Nursing, Biocruces Bizkaia Health Research Institute, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain;
| | - Sheyla González
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; (S.G.); (S.X.D.)
| | - Arantza Urkaregi
- Department of Applied Mathematics and Statistics and Operational Research, Biocruces Bizkaia Health Research Institute, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain;
| | - Jose Ignacio Pijoan
- Clinical Epidemiology Unit, Cruces University Hospital, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain;
| | - Sophie X. Deng
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, CA 90095, USA; (S.G.); (S.X.D.)
| | - Noelia Andollo
- Department of Cell Biology and Histology, School of Medicine and Nursing, Biocruces Bizkaia Health Research Institute, University of the Basque Country UPV/EHU, 48940 Leioa, Bizkaia, Spain;
- Correspondence: ; Tel.: +34-94-601-3295
| |
Collapse
|
15
|
Selecting Appropriate Reference Genes for Quantitative Real-Time Polymerase Chain Reaction Studies in Isolated and Cultured Ocular Surface Epithelia. Sci Rep 2019; 9:19631. [PMID: 31873107 PMCID: PMC6927975 DOI: 10.1038/s41598-019-56054-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
The introduction of tissue engineering has allowed scientists to push the boundaries and treat seriously damaged ocular surface epithelia. They have managed to do this through the development of biological substitutes that restore, maintain or improve tissue function. To ensure the generation of a therapeutically safe and effective graft, knowledge on the transcriptional profile of native and cultured ocular surface epithelia is of undeniable value. Gene expression studies are, however, only as reliable as their proper selection of internal reaction controls or reference genes. In this study, we determined the expression stability of a number of reference genes: 18s rRNA, ACTB, ATP5B, CyC1, EIF4A2, GAPDH, RPL13A, SDHA, TOP1, UBC, and YWHAZ in primary isolates as well as in ex vivo cultured ocular surface epithelia explants (day 0 and/or day 14). Expression stability of the reference genes was assessed with both the geNorm and NormFinder software that use a pairwise comparison and a model-based approach, respectively. Our results extend the general recommendation of using multiple reference genes for normalization purposes to our model systems and provide an overview of several references genes that are likely to be stable in similar culture protocols.
Collapse
|
16
|
Screening of perfused combinatorial 3D microenvironments for cell culture. Acta Biomater 2019; 96:222-236. [PMID: 31255663 DOI: 10.1016/j.actbio.2019.06.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/23/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023]
Abstract
Biomaterials combining biochemical and biophysical cues to establish close-to-extracellular matrix (ECM) models have been explored for cell expansion and differentiation purposes. Multivariate arrays are used as material-saving and rapid-to-analyze platforms, which enable selecting hit-spotted formulations targeting specific cellular responses. However, these systems often lack the ability to emulate dynamic mechanical aspects that occur in specific biological milieus and affect physiological phenomena including stem cells differentiation, tumor progression, or matrix modulation. We report a tailor-made strategy to address the combined effect of flow and biochemical composition of three-dimensional (3D) biomaterials on cellular response. We suggest a simple-to-implement device comprising (i) a perforated platform accommodating miniaturized 3D biomaterials and (ii) a bioreactor that enables the incorporation of the biomaterial-containing array into a disposable perfusion chamber. The system was upscaled to parallelizable setups, increasing the number of analyzed platforms per independent experiment. As a proof-of-concept, porous chitosan scaffolds with 1 mm diameter were functionalized with combinations of 5 ECM and cell-cell contact-mediating proteins, relevant for bone and dental regeneration, corresponding to 32 protein combinatorial formulations. Mesenchymal stem cells adhesion and production of an early osteogenic marker were assessed on-chip on static and under-flow dynamic perfusion conditions. Different hit-spotted biomaterial formulations were detected for the different flow regimes using direct image analysis. Cell-binding proteins still poorly explored as biomaterials components - amelogenin and E-cadherin - were here shown as relevant cell response modulators. Their combination with ECM cell-binding proteins - fibronectin, vitronectin, and type 1 collagen - rendered specific biomaterial combinations with high cell adhesion and ALP production under flow. The developed versatile system may be targeted at widespread tissue regeneration applications, and as a disease model/drug screening platform. STATEMENT OF SIGNIFICANCE: A perfusion system that enables cell culture in arrays of three-dimensional biomaterials under dynamic flow is reported. The effect of 31 cell-binding protein combinations in the adhesion and alkaline phosphatase (ALP) production of mesenchymal stem cells was assessed using a single bioreactor chamber. Flow perfusion was not only assessed as a classical enhancer/accelerator of cell growth and early osteogenic differentiation. We hypothesized that flow may affect cell-protein interactions, and that key components driving cell response may differ under static or dynamic regimes. Indeed, hit-spotted formulations that elicited highest cell attachment and ALP production on static cell culture differed from the ones detected for dynamic flow assays. The impacting role of poorly studied proteins as E-cadherin and amelogenin as biomaterial components was highlighted.
Collapse
|
17
|
Notch Inhibition Prevents Differentiation of Human Limbal Stem/Progenitor Cells in vitro. Sci Rep 2019; 9:10373. [PMID: 31316119 PMCID: PMC6637172 DOI: 10.1038/s41598-019-46793-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/06/2019] [Indexed: 12/26/2022] Open
Abstract
Notch signaling has been shown to regulate the homeostasis and wound healing of the corneal epithelium. We investigated the effect of Notch inhibition in the human limbal stem/progenitor cells (LSCs) in vitro by using small molecules. Treatment of the LSCs with DAPT and SAHM1 reduced the proliferation rate and maintained the undifferentiated state of the LSCs in a concentration dependent manner. Stratification and differentiation of the corneal epithelium were not reduced after Notch inhibition, indicating that the function of the corneal basal cells is retained. Our findings suggest that Notch signaling plays a role in the proliferation and maintenance of LSCs.
Collapse
|
18
|
Hong S, Sunwoo JH, Kim JS, Tchah H, Hwang C. Conjugation of carboxymethyl cellulose and dopamine for cell sheet harvesting. Biomater Sci 2019; 7:139-148. [DOI: 10.1039/c8bm00971f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This manuscript focuses on the cell sheet preparation methodology with the conjugation of carboxymethylcellulose (CMC) and dopamine (DA).
Collapse
Affiliation(s)
- Soyoung Hong
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Jeong Hey Sunwoo
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Ji Seon Kim
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Hungwon Tchah
- Department of Convergence Medicine
- University of Ulsan College of Medicine & Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| |
Collapse
|
19
|
Mei H, González S, Nakatsu MN, Baclagon ER, Chen FV, Deng SX. Human adipose-derived stem cells support the growth of limbal stem/progenitor cells. PLoS One 2017; 12:e0186238. [PMID: 29020119 PMCID: PMC5636133 DOI: 10.1371/journal.pone.0186238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
The most efficient method to expand limbal stem cells (LSCs) in vitro for clinical transplantation is to culture single LSCs directly on growth-arrested mouse fibroblast 3T3 cells. To reduce possible xenobiotic contamination from 3T3s, primary human adipose-derived stem cells (ASCs) were examined as feeder cells to support the expansion of LSCs in vitro. To optimize the ASC-supported culture, freshly isolated limbal epithelial cells in the form of single cells (SC-ASC) or cell clusters (CC-ASC) were cultured using three different methods: LSCs seeded directly on feeder cells, a 3-dimensional (3D) culture system and a 3D culture system with fibrin (fibrin 3D). The expanded LSCs were examined at the end of a 2-week culture. The standard 3T3 culture served as control. Expansion of SC-ASC showed limited proliferation and exhibited differentiated morphology. CC-ASC generated epithelial cells with undifferentiated morphology in all culture methods, among which CC-ASC in 3D culture supported the highest cell doubling (cells doubled 9.0 times compared to cells doubled 4.9 times in control) while maintained the percentage of putative limbal stem/progenitor cells compared to the control. There were few cell-cell contacts between cultured LSCs and ASCs in 3D CC-ASC. In conclusion, ASCs support the growth of LSCs in the form of cell clusters but not in single cells. 3D CC-ASC could serve as a substitute for the standard 3T3 culture to expand LSCs.
Collapse
Affiliation(s)
- Hua Mei
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
| | - Sheyla González
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
| | - Martin N. Nakatsu
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
| | - Elfren R. Baclagon
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
| | - Felix V. Chen
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
- UCLA College of Letters and Science, University of California, Los Angeles, California, United States of America
| | - Sophie X. Deng
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Zhang C, Du L, Pang K, Wu X. Differentiation of human embryonic stem cells into corneal epithelial progenitor cells under defined conditions. PLoS One 2017; 12:e0183303. [PMID: 28813511 PMCID: PMC5557585 DOI: 10.1371/journal.pone.0183303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
The development of cell-based therapies using stem cells represents a significant breakthrough in the treatment of limbal stem cell deficiency (LSCD). The aim of this study was to develop a novel protocol to differentiate human embryonic stem cells (hESCs) into corneal epithelial progenitor cells (CEPCs), with similar features to primary cultured human limbal stem cells (LSCs), using a medium composed of DMEM/F12 and defined keratinocyte serum-free medium (KSFM) (1:1) under different carbon dioxide (CO2) levels in culture. The differentiated cells exhibited a similar morphology to limbal stem cells under 5%, 7%, and 9% CO2 and expressed the LSC markers ABCG-2 and p63; however, CK14 was only expressed in the cells cultured under 7% and 9% CO2. Quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis indicated that the ABCG2, p63, and CK14 levels in the 7% CO2 and 9% CO2 groups were higher than those in the 5% CO2 group and in undifferentiated hESCs (p<0.05). The highest expression of ABCG2 and p63 was exhibited in the cells cultured under 7% CO2 at day 6 of differentiation. Western blotting indicated that the ABCG2 and p63 levels were higher at day 6 than the other time points in the 7% CO2 and 9% CO2 groups. The highest protein expression of ABCG2 and p63 was identified in the 7% CO2 group. The neural cell-specific marker tubulin β3 and the epidermal marker K1/10 were also detected in the differentiated cells via immunofluorescent staining; thus, cell sorting was performed via fluorescence-activated cell sorting (FACS), and ABCG2-positive cells were isolated as CEPCs. The sorted cells formed three to four layers of epithelioid cells by airlifting culture and expressed ABCG2, p63, CK14, and CK3. In conclusion, the novel induction system conditioned by 7% CO2 in this study may be an effective and feasible method for CEPC differentiation.
Collapse
Affiliation(s)
- Canwei Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Liqun Du
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Kunpeng Pang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- * E-mail:
| |
Collapse
|
21
|
Autologous method for ex vivo expansion of human limbal epithelial progenitor cells based on plasma rich in growth factors technology. Ocul Surf 2017; 15:248-256. [PMID: 28115245 DOI: 10.1016/j.jtos.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE Develop an autologous culture method for ex vivo expansion of human limbal epithelial progenitor cells (LEPCs) using Plasma Rich in Growth Factors (PRGF) as a growth supplement and as a scaffold for the culture of LEPCs. METHODS LEPCs were cultivated in different media supplemented with 10% fetal bovine serum (FBS) or 10% PRGF. The outgrowths, total number of cells, colony forming efficiency (CFE), morphology and immunocytochemistry against p63- α and cytokeratins 3 and 12 (CK3-CK12) were analyzed. PRGF was also used to elaborate a fibrin membrane. The effects of the scaffold on the preservation of stemness and the phenotypic characterization of LEPCs were investigated through analysis of CK3-CK12, ABCG-2 and p63. RESULTS LEPCs cultivated with PRGF showed a significantly higher growth area than FBS cultures. Moreover, the number of cells were also higher in PRGF than FBS, while displaying a better morphology overall. CFE was found to be also higher in PRGF groups compared to FBS, and the p63-α expression also differed between groups. LEPCs cultivated on PRGF membranes appeared as a confluent monolayer of cells and still retained p63 and ABCG-2 expression, being negative for CK3-CK12. CONCLUSIONS PRGF can be used in corneal tissue engineering, supplementing the culture media, even in a basal media without any other additives, as well as providing a scaffold for the culture.
Collapse
|