1
|
Kowalczyk AE, Śliwińska-Jewsiewicka A, Kraziński BE, Piotrowska A, Grzegrzółka J, Godlewski J, Dzięgiel P, Kmieć Z. Reduced Expression of SATB2 in Colorectal Cancer and Its Association with Demographic and Clinicopathological Parameters. Int J Mol Sci 2025; 26:2374. [PMID: 40076993 PMCID: PMC11901120 DOI: 10.3390/ijms26052374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Special AT-rich sequence-binding protein 2 (SATB2), as a nuclear matrix-associated protein and transcription factor engaged in chromatin remodeling and the regulation of gene expression, plays an important role in growth and development processes. SATB2 has been shown to have tissue-specific expression, also related to some cancers, including colorectal cancer (CRC). The aim of this study was to compare SATB2 gene expression in tumor and matched non-involved colorectal tissues obtained from CRC patients, and to investigate its association with clinicopathological and demographic parameters, as well as patients' overall survival. SATB2 mRNA levels in the tested tissues were assessed by quantitative polymerase chain reaction, while SATB2 protein expression was determined by immunohistochemistry. We found that the average levels of both SATB2 mRNA and protein were significantly lower in tumor specimens than in matched non-involved colon tissues. Moreover, SATB2 immunoreactivity was associated with patients' sex, tumor localization, and grade of differentiation. Lower immunoreactivity of SATB2 protein was noted in high-grade tumors, in women, and in tumors located in the cecum, ascending, and transverse colon. However, the results of the present study did not show an association between SATB2 expression levels and patients' overall survival. Our findings indicate the involvement of impaired SATB2 expression, significantly reduced in high-grading tumors, in the pathogenesis of CRC, while its sex- and localization-specificity should be further elucidated.
Collapse
Affiliation(s)
- Anna Ewa Kowalczyk
- Department of Anatomy and Histology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.Ś.-J.); (B.E.K.); (J.G.); (Z.K.)
| | - Agnieszka Śliwińska-Jewsiewicka
- Department of Anatomy and Histology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.Ś.-J.); (B.E.K.); (J.G.); (Z.K.)
| | - Bartłomiej Emil Kraziński
- Department of Anatomy and Histology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.Ś.-J.); (B.E.K.); (J.G.); (Z.K.)
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Jędrzej Grzegrzółka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Janusz Godlewski
- Department of Anatomy and Histology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.Ś.-J.); (B.E.K.); (J.G.); (Z.K.)
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (J.G.); (P.D.)
| | - Zbigniew Kmieć
- Department of Anatomy and Histology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.Ś.-J.); (B.E.K.); (J.G.); (Z.K.)
| |
Collapse
|
2
|
Mestareehi A. Global Gene Expression Profiling and Bioinformatics Analysis Reveal Downregulated Biomarkers as Potential Indicators for Hepatocellular Carcinoma. ACS OMEGA 2024; 9:26075-26096. [PMID: 38911766 PMCID: PMC11191119 DOI: 10.1021/acsomega.4c01496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Objective: The study aimed to elucidate the significance of CLEC4G, CAMK2β, SLC22A1, CBFA2T3, and STAB2 in the prognosis of hepatocellular carcinoma (HCC) patients and their associated molecular biological characteristics. Additionally, the research sought to identify new potential biomarkers with therapeutic and diagnostic relevance for clinical applications. Methods and Materials: We utilized a publicly available high throughput phosphoproteomics and proteomics data set of HCC to focus on the analysis of 12 downregulated phosphoproteins in HCC. Our approach integrates bioinformatic analysis with pathway analysis, encompassing gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the construction of a protein-protein interaction (PPI) network. Results: In total, we quantified 11547 phosphorylation sites associated with 4043 phosphoproteins from a cohort of 159 HCC patients. Within this extensive data set, our specific focus was on 19 phosphorylation sites displaying significant downregulation (log2 FC ≤ -2 with p-values < 0.0001). Remarkably, our investigation revealed distinct pathways exhibiting differential regulation across multiple dimensions, including the genomic, transcriptomic, proteomic, and phosphoproteomic levels. These pathways encompass a wide range of critical cellular processes, including cellular component organization, cell cycle control, signaling pathways, transcriptional and translational control, and metabolism. Furthermore, our bioinformatics analysis unveiled noteworthy insights into the subcellular localizations, biological processes, and molecular functions associated with these proteins and phosphoproteins. Within the context of the PPI network, we identified 12 key genes CLEC4G, STAB2, ADH1A, ADH1B, CAMK2B, ADH4, CHGB, PYGL, ADH1C, AKAP12, CBFA2T3, and SLC22A1 as the top highly interconnected hub genes. Conclusions: The findings related to CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 indicate their reduced expression in HCC, which is associated with an unfavorable prognosis. Furthermore, the results of KEGG and GO pathway analyses suggest that these genes may impact liver cancer by engaging various targets and pathways, ultimately promoting the progression of hepatocellular carcinoma. These results underscore the significant potential of CLEC4G, ADH1B, SLC22A1, CAMK2β, CBFA2T3, and STAB2 as key contributors to HCC development and advancement. This insight holds promise for identifying therapeutic targets and charting research avenues to enhance our understanding of the intricate molecular mechanisms underlying hepatocellular carcinoma.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, P.O. Box 22, Amman 11622, Jordan
- School
of Medicine, The Ohio State University, Columbus, Ohio 43202, United States
- Department
of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| |
Collapse
|
3
|
Herbein G. Cellular Transformation by Human Cytomegalovirus. Cancers (Basel) 2024; 16:1970. [PMID: 38893091 PMCID: PMC11171319 DOI: 10.3390/cancers16111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Epstein-Barr virus (EBV), Kaposi sarcoma human virus (KSHV), human papillomavirus (HPV), hepatitis B and C viruses (HBV, HCV), human T-lymphotropic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV) are the seven human oncoviruses reported so far. While traditionally viewed as a benign virus causing mild symptoms in healthy individuals, human cytomegalovirus (HCMV) has been recently implicated in the pathogenesis of various cancers, spanning a wide range of tissue types and malignancies. This perspective article defines the biological criteria that characterize the oncogenic role of HCMV and based on new findings underlines a critical role for HCMV in cellular transformation and modeling the tumor microenvironment as already reported for the other human oncoviruses.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté (UFC), 25000 Besançon, France;
- Department of Virology, CHU Besançon, 25000 Besançon, France
| |
Collapse
|
4
|
Roy SK, Srivastava S, McCance C, Shrivastava A, Morvant J, Shankar S, Srivastava RK. Clinical significance of PNO1 as a novel biomarker and therapeutic target of hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18295. [PMID: 38722284 PMCID: PMC11081011 DOI: 10.1111/jcmm.18295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
The RNA-binding protein PNO1 plays an essential role in ribosome biogenesis. Recent studies have shown that it is involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) is not well understood. The purpose of this study was to examine whether PNO1 can be used as a biomarker of HCC and also examine the therapeutic potential of PNO1 knockout for the treatment of HCC. PNO1 expression was upregulated in HCC and associated with poor prognosis. PNO1 expression was positively associated with tumour stage, lymph node metastasis and poor survival. PNO1 expression was significantly higher in HCC compared to that in fibrolamellar carcinoma or normal tissues. Furthermore, HCC tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53. PNO1 knockout suppressed cell viability, colony formation and EMT of HCC cells. Since activation of Notch signalling pathway promotes HCC, we measured the effects of PNO1 knockout on the components of Notch pathway and its targets. PNO1 knockout suppressed Notch signalling by modulating the expression of Notch ligands and their receptors, and downstream targets. PNO1 knockout also inhibited genes involved in surface adhesion, cell cycle, inflammation and chemotaxis. PNO1 knockout also inhibited colony and spheroid formation, cell migration and invasion, and markers of stem cells, pluripotency and EMT in CSCs. Overall, our data suggest that PNO1 can be used as a diagnostic and prognostic biomarker of HCC, and knockout of PNO1 by CRISPR/Cas9 can be beneficial for the management of HCC by targeting CSCs.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Stanley S. Scott Cancer Center, School of MedicineLouisiana State University HealthNew OrleansLouisianaUSA
| | | | - Caroline McCance
- Department of Cellular and Molecular BiologyTulane UniversityNew OrleansLouisianaUSA
| | | | - Jason Morvant
- Department of SurgeryOchsner Health SystemGretnaLouisianaUSA
| | - Sharmila Shankar
- Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer Center, School of MedicineLouisiana State University HealthNew OrleansLouisianaUSA
- Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
- Department of GeneticsLouisiana State University Health Sciences Center – New OrleansNew OrleansLouisianaUSA
- GLAXDoverDelawareUSA
| |
Collapse
|
5
|
Bahnassy S, Stires H, Jin L, Tam S, Mobin D, Balachandran M, Podar M, McCoy MD, Beckman RA, Riggins RB. Unraveling Vulnerabilities in Endocrine Therapy-Resistant HER2+/ER+ Breast Cancer. Endocrinology 2023; 164:bqad159. [PMID: 37897495 PMCID: PMC10651073 DOI: 10.1210/endocr/bqad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/estrogen receptor-positive (HER2+/ER+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of patients with HER2+/ER+ receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized 2 in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. To mimic ETR to aromatase inhibitors (AIs), we developed 2 long-term estrogen deprivation (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 subtyping, and genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of aggressive MM361 LTEDs identified mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and ferroptosis-associated antioxidant genes, including GPX4. Combining a GPX4 inhibitor with anti-HER2 agents induced significant cell death in both MM361 and BT474 LTEDs. The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.
Collapse
Affiliation(s)
- Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | | | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Stanley Tam
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Dua Mobin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Manasi Balachandran
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - Mircea Podar
- Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Matthew D McCoy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Robert A Beckman
- Department of Oncology and of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, DC 20007, USA
- Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Rebecca B Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
6
|
Bahnassy S, Stires H, Jin L, Tam S, Mobin D, Balachandran M, Podar M, McCoy MD, Beckman RA, Riggins RB. Unraveling Vulnerabilities in Endocrine Therapy-Resistant HER2+/ER+ Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554116. [PMID: 37662291 PMCID: PMC10473676 DOI: 10.1101/2023.08.21.554116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Breast tumors overexpressing human epidermal growth factor receptor (HER2) confer intrinsic resistance to endocrine therapy (ET), and patients with HER2/ estrogen receptor-positive (HER2+/HR+) breast cancer (BCa) are less responsive to ET than HER2-/ER+. However, real-world evidence reveals that a large subset of HER2+/ER+ patients receive ET as monotherapy, positioning this treatment pattern as a clinical challenge. In the present study, we developed and characterized two distinct in vitro models of ET-resistant (ETR) HER2+/ER+ BCa to identify possible therapeutic vulnerabilities. Methods To mimic ETR to aromatase inhibitors (AI), we developed two long-term estrogen-deprived (LTED) cell lines from BT-474 (BT474) and MDA-MB-361 (MM361). Growth assays, PAM50 molecular subtyping, genomic and transcriptomic analyses, followed by validation and functional studies, were used to identify targetable differences between ET-responsive parental and ETR-LTED HER2+/ER+ cells. Results Compared to their parental cells, MM361 LTEDs grew faster, lost ER, and increased HER2 expression, whereas BT474 LTEDs grew slower and maintained ER and HER2 expression. Both LTED variants had reduced responsiveness to fulvestrant. Whole-genome sequencing of the more aggressive MM361 LTED model system identified exonic mutations in genes encoding transcription factors and chromatin modifiers. Single-cell RNA sequencing demonstrated a shift towards non-luminal phenotypes, and revealed metabolic remodeling of MM361 LTEDs, with upregulated lipid metabolism and antioxidant genes associated with ferroptosis, including GPX4. Combining the GPX4 inhibitor RSL3 with anti-HER2 agents induced significant cell death in both the MM361 and BT474 LTEDs. Conclusions The BT474 and MM361 AI-resistant models capture distinct phenotypes of HER2+/ER+ BCa and identify altered lipid metabolism and ferroptosis remodeling as vulnerabilities of this type of ETR BCa.
Collapse
Affiliation(s)
- Shaymaa Bahnassy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | | | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Stanley Tam
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Dua Mobin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Manasi Balachandran
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN
| | | | - Matthew D. McCoy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Robert A. Beckman
- Departments of Oncology and of Biostatistics, Bioinformatics, and Biomathematics, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| |
Collapse
|
7
|
Xu J, Liu C, Yu C, Yu T, Fan F, Zhang X, Huang C, Chen W, Sun Z, Zhou M. Breast mass as the first sign of metastasis from rectal carcinoma: a case report and review of the literature. Front Oncol 2023; 13:1211645. [PMID: 37434982 PMCID: PMC10332164 DOI: 10.3389/fonc.2023.1211645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
We present a case report of a 41-year-old woman who developed a left breast mass 18 months after undergoing Dixon rectal cancer surgery. The purpose of this case report is to highlight the possibility of breast metastases in patients with colorectal cancer and emphasize the importance of careful evaluation and follow-up as well as timely and accurate diagnosis and management of the metastatic disease. During the physical examination in 2021, we noted that the lower border of the mass was 9 cm from the anal verge and that it occupied approximately one-third of the intestinal lumen. A pathological biopsy revealed the mass in the patient's intestinal lumen was a rectal adenocarcinoma. The patient underwent Dixon surgery for rectal cancer and received subsequent chemotherapy. The patient had no prior history of breast-related medical conditions or a family history of breast cancer. During the current physical examination, we discovered multiple lymphadenopathies in the patient's left neck, bilateral axillae, and left inguinal region, but none elsewhere. We observed a large erythema of about 15x10 cm on the patient's left breast, with scattered hard nodes of varying sizes. Palpation of the area beyond the upper left breast revealed a mass measuring 3x3 cm. We conducted further examinations of the patient, which revealed the breast mass and lymphadenopathy on imaging. However, we did not find any other imaging that had significant diagnostic value. Based on the patient's conventional pathology and immunohistochemical findings, combined with the patient's past medical history, we strongly suspected that the patient's breast mass was of rectal origin. This was confirmed by the abdominal CT performed afterward. The patient was treated with a chemotherapy regimen consisting of irinotecan 260 mg, fluorouracil 2.25 g, and cetuximab 700 mg IV drip, which resulted in a favorable clinical response. This case illustrates that colorectal cancer can metastasize to unusual sites and underscores the importance of thorough evaluation and follow-up, particularly when symptoms are atypical. It also highlights the importance of timely and accurate diagnosis and management of metastatic disease to improve the patient's prognosis.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Affiliated Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Pathology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Affiliated Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Liu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Affiliated Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chengdong Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Affiliated Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Affiliated Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fan Fan
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Affiliated Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaofang Zhang
- Department of Pathology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Affiliated Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chuansheng Huang
- Department of Pathology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Affiliated Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Chen
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Affiliated Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhengkui Sun
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Affiliated Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Meng Zhou
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Affiliated Cancer Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Roy SK, Srivastava S, Hancock A, Shrivastava A, Morvant J, Shankar S, Srivastava RK. Inhibition of ribosome assembly factor PNO1 by CRISPR/Cas9 technique suppresses lung adenocarcinoma and Notch pathway: Clinical application. J Cell Mol Med 2023; 27:365-378. [PMID: 36625087 PMCID: PMC9889701 DOI: 10.1111/jcmm.17657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Growth is crucially controlled by the functional ribosomes available in cells. To meet the enhanced energy demand, cancer cells re-wire and increase their ribosome biogenesis. The RNA-binding protein PNO1, a ribosome assembly factor, plays an essential role in ribosome biogenesis. The purpose of this study was to examine whether PNO1 can be used as a biomarker for lung adenocarcinoma and also examine the molecular mechanisms by which PNO1 knockdown by CRISPR/Cas9 inhibited growth and epithelial-mesenchymal transition (EMT). The expression of PNO1 was significantly higher in lung adenocarcinoma compared to normal lung tissues. PNO1 expression in lung adenocarcinoma patients increased with stage, nodal metastasis, and smoking. Lung adenocarcinoma tissues from males expressed higher PNO1 than those from females. Furthermore, lung adenocarcinoma tissues with mutant Tp53 expressed higher PNO1 than those with wild-type Tp53, suggesting the influence of Tp53 status on PNO1 expression. PNO1 knockdown inhibited cell viability, colony formation, and EMT, and induced apoptosis. Since dysregulated signalling through the Notch receptors promotes lung adenocarcinoma, we measured the effects of PNO1 inhibition on the Notch pathway. PNO1 knockdown inhibited Notch signalling by suppressing the expression of Notch receptors, their ligands, and downstream targets. PNO1 knockdown also suppressed CCND1, p21, PTGS-2, IL-1α, IL-8, and CXCL-8 genes. Overall, our data suggest that PNO1 can be used as a diagnostic biomarker, and also can be an attractive therapeutic target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA
| | | | - Andrew Hancock
- Department of Molecular and Cellular BiologyTulane UniversityNew OrleansLouisianaUSA
| | | | - Jason Morvant
- Department of SurgeryOchsner Health SystemGretnaLouisianaUSA
| | - Sharmila Shankar
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA,Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA,John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLouisianaUSA,Kansas City VA Medical CenterKansas CityMissouriUSA
| | - Rakesh K. Srivastava
- Louisiana State University Health‐New Orleans, School of MedicineStanley S. Scott Cancer CenterNew OrleansLouisianaUSA,Southeast Louisiana Veterans Health Care SystemNew OrleansLouisianaUSA,Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA,Kansas City VA Medical CenterKansas CityMissouriUSA
| |
Collapse
|
9
|
Roy SK, Ma Y, Lam BQ, Shrivastava A, Srivastav S, Shankar S, Srivastava RK. Riluzole regulates pancreatic cancer cell metabolism by suppressing the Wnt-β-catenin pathway. Sci Rep 2022; 12:11062. [PMID: 35773307 PMCID: PMC9246955 DOI: 10.1038/s41598-022-13472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Most cancer cells rely on aerobic glycolysis to support uncontrolled proliferation and evade apoptosis. However, pancreatic cancer cells switch to glutamine metabolism to survive under hypoxic conditions. Activation of the Wnt/β-catenin pathway induces aerobic glycolysis by activating enzymes required for glucose metabolism and regulating the expression of glutamate transporter and glutamine synthetase. The results demonstrate that riluzole inhibits pancreatic cancer cell growth and has no effect on human pancreatic normal ductal epithelial cells. RNA-seq experiments identified the involvement of Wnt and metabolic pathways by riluzole. Inhibition of Wnt-β-catenin/TCF-LEF pathway by riluzole suppresses the expression of PDK, MCT1, cMyc, AXIN, and CyclinD1. Riluzole inhibits glucose transporter 2 expression, glucose uptake, lactate dehydrogenase A expression, and NAD + level. Furthermore, riluzole inhibits glutamate release and glutathione levels, and elevates reactive oxygen species. Riluzole disrupts mitochondrial homeostasis by inhibiting Bcl-2 and upregulating Bax expression, resulting in a drop of mitochondrial membrane potential. Finally, riluzole inhibits pancreatic cancer growth in KPC (Pdx1-Cre, LSL-Trp53R172H, and LSL-KrasG12D) mice. In conclusion, riluzole can inhibit pancreatic cancer growth by regulating glucose and glutamine metabolisms and can be used to treat pancreatic cancer.
Collapse
Affiliation(s)
- Sanjit K Roy
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA
| | - Yiming Ma
- Kansas City VA Medical Center, Kansas City, MO, 66128, USA
| | - Bao Q Lam
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA
| | - Anju Shrivastava
- St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Sudesh Srivastav
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA
- Kansas City VA Medical Center, Kansas City, MO, 66128, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, 70112, USA
| | - Rakesh K Srivastava
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, 70122, USA.
- Kansas City VA Medical Center, Kansas City, MO, 66128, USA.
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
10
|
Yu W, Ma Y, Shrivastava SK, Srivastava RK, Shankar S. Chronic alcohol exposure induces hepatocyte damage by inducing oxidative stress, SATB2 and stem cell‐like characteristics, and activating lipogenesis. J Cell Mol Med 2022; 26:2119-2131. [PMID: 35152538 PMCID: PMC8980954 DOI: 10.1111/jcmm.17235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Alcohol is a risk factor for hepatocellular carcinoma (HCC). However, the molecular mechanism by which chronic alcohol consumption contributes to HCC is not well understood. The purpose of the study was to demonstrate the effects of chronic ethanol exposure on the damage of human normal hepatocytes. Our data showed that chronic exposure of hepatocytes with ethanol induced changes similar to transformed hepatocytes that is, exhibited colonies and anchorage‐independent growth. These damaged hepatocytes contained high levels of reactive oxygen species (ROS) and showed induction of the SATB2 gene. Furthermore, damaged hepatocytes gained the phenotypes of CSCs which expressed stem cell markers (CD133, CD44, CD90, EpCAM, AFP and LGR5), and pluripotency maintaining factors (Sox‐2, POU5F1/Oct4 and KLF‐4). Ethanol exposure also induced Nanog, a pluripotency maintaining transcription factor that functions in concert with Oct4 and SOX‐2. Furthermore, ethanol induced expression of EMT‐related transcription factors (Snail, Slug and Zeb1), N‐Cadherin, and inhibited E‐cadherin expression in damaged hepatocytes. Ethanol enhanced recruitment of SATB2 to promoters of Bcl‐2, Nanog, c‐Myc, Klf4 and Oct4. Ethanol also induced activation of the Wnt/TCF‐LEF1 pathway and its targets (Bcl‐2, Cyclin D1, AXIN2 and Myc). Finally, ethanol induced hepatocellular steatosis, SREBP1 transcription, and modulated the expression of SREBP1c, ACAC, ACLY, FASN, IL‐1β, IL‐6, TNF‐α, GPC3, FLNB and p53. These data suggest that chronic alcohol consumption may contribute towards the development of HCC by damaging normal hepatocytes with the generation of inflammatory environment, induction of SATB2, stem cell‐like characteristics, and cellular steatosis.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center Kansas City Missouri USA
| | - Yiming Ma
- Kansas City VA Medical Center Kansas City Missouri USA
| | - Sushant K. Shrivastava
- Department of Pharmaceutics Indian Institute of Technology Banaras Hindu University Varanasi U.P. India
| | - Rakesh K. Srivastava
- Kansas City VA Medical Center Kansas City Missouri USA
- Department of Genetics Louisiana State University Health Sciences Center New Orleans Louisina USA
- Stanley S. Scott Cancer Center Department of Genetics Louisiana State University Health Sciences Center New Orleans Louisina USA
- A.B. Freeman School of Business Tulane University New Orleans Louisina USA
| | - Sharmila Shankar
- Kansas City VA Medical Center Kansas City Missouri USA
- John W. Deming Department of Medicine Tulane University School of Medicine New Orleans Louisina USA
- Southeast Louisiana Veterans Health Care System New Orleans Louisina USA
| |
Collapse
|
11
|
Yu W, Ma Y, Roy SK, Srivastava R, Shankar S, Srivastava RK. Ethanol exposure of human pancreatic normal ductal epithelial cells induces EMT phenotype and enhances pancreatic cancer development in KC (Pdx1-Cre and LSL-Kras G12D ) mice. J Cell Mol Med 2021; 26:399-409. [PMID: 34859959 PMCID: PMC8743655 DOI: 10.1111/jcmm.17092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol is a risk factor for pancreatic cancer. However, the molecular mechanism by which chronic alcohol consumption influences pancreatic cancer development is not well understood. We have recently demonstrated that chronic ethanol exposure of pancreatic normal ductal epithelial cells (HPNE) induces cellular transformation by generating cancer stem cells (CSCs). Here, we examined whether chronic ethanol treatment induces epithelial–mesenchymal transition in HPNE cells and promotes pancreatic cancer development in KC (Pdx1‐Cre, and LSL‐KrasG12D) mice. Our data demonstrate that chronic ethanol exposure of HPNE cells induces SATB2 gene and those cells became highly motile. Ethanol treatment of HPNE cells results in downregulation of E‐Cadherin and upregulation of N‐Cadherin, Snail, Slug, Zeb1, Nanog and BMI‐1. Suppression of SATB2 expression in ethanol‐transformed HPNE cells inhibits EMT phenotypes. KC mice fed with an ethanol‐containing diet show enhanced pancreatic cancer growth and development than those fed with a control diet. Pancreas isolated from KC mice fed with an ethanol‐containing diet show higher expression of stem cell markers (CD133, CD44, CD24), pluripotency‐maintaining factors (cMyc, KLF4, SOX‐2, and Oct‐4), N‐Cadherin, EMT‐transcription factors (Snail, Slug, and Zeb1), and lower expression of E‐cadherin than those isolated from mice fed with a control diet. Furthermore, pancreas isolated from KC mice fed with an ethanol‐containing diet show higher expression of inflammatory cytokines (TNF‐α, IL‐6, and IL‐8) and PTGS‐2 (COX‐2) gene than those isolated from mice fed with a control diet. These data suggest that chronic alcohol consumption may contribute to pancreatic cancer development by generating inflammatory signals and CSCs.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Yuming Ma
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Sanjit K Roy
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA
| | - Rashmi Srivastava
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA
| | - Sharmila Shankar
- Kansas City VA Medical Center, Kansas City, Missouri, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA.,John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisina, USA.,Southeast Louisiana Veterans Health Care System, New Orleans, Louisina, USA
| | - Rakesh K Srivastava
- Kansas City VA Medical Center, Kansas City, Missouri, USA.,Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA.,Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisina, USA.,Southeast Louisiana Veterans Health Care System, New Orleans, Louisina, USA
| |
Collapse
|
12
|
Zhu Y, Chen QY, Jordan A, Sun H, Roy N, Costa M. RUNX2/miR‑31/SATB2 pathway in nickel‑induced BEAS‑2B cell transformation. Oncol Rep 2021; 46:154. [PMID: 34109987 DOI: 10.3892/or.2021.8105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/05/2021] [Indexed: 11/05/2022] Open
Abstract
Nickel (Ni) compounds are classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC) and are known to be carcinogenic to the lungs. In our previous study, special AT‑rich sequence‑binding protein 2 (SATB2) was required for Ni‑induced BEAS‑2B cell transformation. In the present study, a pathway that regulates the expression of SATB2 protein was investigated in Ni‑transformed BEAS‑2B cells using western blotting and RT‑qPCR for expression, and soft agar, migration and invasion assays for cell transformation. Runt‑related transcription factor 2 (RUNX2), a master regulator of osteogenesis and an oncogene, was identified as an upstream regulator for SATB2. Ni induced RUNX2 expression and initiated BEAS‑2B transformation and metastatic potential. Previously, miRNA‑31 was identified as a negative regulator of SATB2 during arsenic‑induced cell transformation, and in the present study it was identified as a downstream target of RUNX2 during carcinogenesis. miR‑31 expression was reduced in Ni‑transformed BEAS‑2B cells, which was required to maintain cancer hallmarks. The expression level of miR‑31 was suppressed by RUNX2 in BEAS‑2B cells, and this increased the expression level of SATB2, initiating cell transformation. Ni caused the repression of miR‑31 by placing repressive marks at its promoter, which in turn increased the expression level of SATB2, leading to cell transformation.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710000, P.R. China
| | - Ashley Jordan
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Hong Sun
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Nirmal Roy
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10100, USA
| |
Collapse
|
13
|
Kmeid M, Lukose G, Hodge K, Cho D, Kim KA, Lee H. Aberrant expression of SATB2, CDX2, CDH17 and CK20 in hepatocellular carcinoma: a pathological, clinical and outcome study. Histopathology 2021; 79:768-778. [PMID: 34036629 DOI: 10.1111/his.14420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/08/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
AIMS Data regarding expression of intestinal markers in hepatocellular carcinoma (HCC) are limited. We determined the clinicopathological associations of cytokeratin (CK)19, a progenitor liver epithelial cell marker as well as biliary epithelial marker, and intestinal immunohistochemical markers expression in HCC and assessed their prognostic value. METHODS AND RESULTS Tissue sections and/or tissue microarrays (TMAs) from 202 known HCCs were immunostained using CK19, CK20, CDH17, CDX2 and SATB2 antibodies. Haematoxylin and eosin (H&E)-stained slides were reviewed for tumour grading. Clinical and oncological outcomes were retrieved. Associations of staining with clinicopathological features and survival outcomes were evaluated. CK19, CK20, CDH17, CDX2 and SATB2 were positive in 12.8, 5.4, 10.3, 8.6 and 59.9%, respectively. All but SATB2 were strongly associated with higher tumour grade and AFP levels > 400 ng/ml (P < 0.05). CK19-positive HCC were more likely to express CDX2 (P = 0.001), CDH17 (P < 0.001) and/or CK20 (P = 0.012). CK20, CDX2 and CDH17 co-expression was seen in five cases (2.5%). CK19 and SATB2 positivity, tumour size ≥ 5 cm, background cirrhosis, AFP > 400 ng/ml and having no treatment were associated with decreased overall survival by log-rank test and univariable proportional hazards regression. However, in a multivariable model, CK19 and SATB2 positivity were not independent predictors of decreased survival while their association with known poor prognosticators in HCC was evident. CONCLUSIONS HCC can express markers of intestinal differentiation. This phenotypical aberrancy correlates with variable clinicopathological parameters, some of which are independent predictors of poor survival.
Collapse
Affiliation(s)
- Michel Kmeid
- Department of Pathology, Albany Medical Center, Albany, NY, USA
| | | | | | - Daniel Cho
- Schenectady Pathology Associates, Ellis Hospital, Schenectady, NY, USA
| | - Kelly-Ann Kim
- Department of Pathology, Albany Medical Center, Albany, NY, USA
| | - Hwajeong Lee
- Department of Pathology, Albany Medical Center, Albany, NY, USA
| |
Collapse
|
14
|
Li M, Zhang W, Yang X, An G, Zhao W. The α2δ1 subunit of the voltage-gated calcium channel acts as a potential candidate for breast cancer tumor initial cells biomarker. Cancer Biomark 2021; 31:295-305. [PMID: 33896833 DOI: 10.3233/cbm-203165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The voltage-gated calcium channel subunit alpha 2 delta 1 (α2δ1) is a functional tumor initial cells (TICs) marker for some solid cancer cells. This study aimed to investigate whether α2δ1 can be used as a potential TIC marker for breast cancer cells. METHODS α2δ1+ and α2δ1- cells were identified and sorted from the breast cancer cell lines MDA-MB-231, MDA-MB-435s and ZR-75-1 by Immunofluorescence (IF) and Fluorescent-activated cell sorting (FACS) analyses. Spheroid formation in vitro and tumorigenesis in NOD/SCID mice were assessed to determine the self-renewal and serial transplantation abilities of these cells. Using a lentivirus infection system for α2δ1 in breast cancer cell lines, we determined the mRNA levels of stemnessassociated genes by quality real-time PCR (qRT-PCR). Boyden chamber and wounding assays were further performed to detect the migration of α2δ1 overexpression cells. Bioinformatics explored the relationship of molecular classification of breast cancer and drug resistance. RESULTS α2δ1 presents on the cytomembrane of breast cancer cells, with a positive rate of 1.5-3%. The α2δ1+ cells in breast cancer cell lines have a stronger self-renewal ability and tumor initiating properties in vitro and in vivo. Overexpressing α2δ1 successfully enhanced the sphere-forming efficiency, and upregulated the expression of stemness-associated genes, and increased cell migration. However, seldom significant was available between estrogen receptor +/- (ER+/-), progesterone receptor (PR+/-), and Her2+/-. CONCLUSIONS Breast cancer cells positive for the α2δ1 charactered tumor initiation, and α2δ1 is a potential TIC marker for breast cancer that further promotes the migration.
Collapse
|
15
|
Nehme Z, Pasquereau S, Haidar Ahmad S, Coaquette A, Molimard C, Monnien F, Algros MP, Adotevi O, Diab Assaf M, Feugeas JP, Herbein G. Polyploid giant cancer cells, stemness and epithelial-mesenchymal plasticity elicited by human cytomegalovirus. Oncogene 2021; 40:3030-3046. [PMID: 33767437 DOI: 10.1038/s41388-021-01715-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
A growing body of evidence is recognizing human cytomegalovirus (HCMV) as a potential oncogenic virus. We hereby provide the first experimental in vitro evidence for HCMV as a reprogramming vector, through the induction of dedifferentiation of mature human mammary epithelial cells (HMECs), generation of a polyploid giant cancer cell (PGCC) phenotype characterized by sustained growth of blastomere-like cells, in concordance with the acquisition of embryonic stem cells characteristics and epithelial-mesenchymal plasticity. HCMV presence parallels the succession of the observed cellular and molecular events potentially ensuing the transformation process. Correlation between PGCCs detection and HCMV presence in breast cancer tissue further validates our hypothesis in vivo. Our study indicates that some clinical HCMV strains conserve the potential to transform HMECs and fit with a "blastomere-like" model of oncogenesis, which may be relevant in the pathophysiology of breast cancer and other adenocarcinoma, especially of poor prognosis.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
- Lebanese University, Beyrouth, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
| | - Sandy Haidar Ahmad
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France
- Lebanese University, Beyrouth, Lebanon
| | | | - Chloé Molimard
- Department of Pathology, CHRU Besançon, Besançon, France
| | - Franck Monnien
- Department of Pathology, CHRU Besançon, Besançon, France
| | | | - Olivier Adotevi
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | | | - Jean-Paul Feugeas
- INSERM, EFS BFC, UMR1098, RIGHT, University of Bourgogne Franche-Comté, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Bourgogne France-Comté, Besançon, France.
- Department of Virology, CHRU Besançon, Besançon, France.
| |
Collapse
|
16
|
Zhu Y, Ortiz A, Costa M. Wrong place, wrong time: Runt-related transcription factor 2/SATB2 pathway in bone development and carcinogenesis. J Carcinog 2021; 20:2. [PMID: 34211338 PMCID: PMC8202446 DOI: 10.4103/jcar.jcar_22_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/03/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Upregulation or aberrant expression of genes such as special AT-rich sequence-binding protein 2 (SATB2) is necessary for normal cell differentiation and tissue development and is often associated with carcinogenesis and metastatic progression. SATB2 is a critical transcription factor for biological development of various specialized cell lineages, such as osteoblasts and neurons. The dysregulation of SATB2 expression has recently been associated with various types of cancer, while the mechanisms and pathways by which it mediates tumorigenesis are not well elucidated. Runt-related transcription factor 2 (RUNX2) is a master regulator for osteogenesis, and it shares common pathways with SATB2 to regulate bone development. Interestingly, these two transcription factors co-occur in several epithelial and mesenchymal cancers and are linked by multiple cancer-related proteins and microRNAs. This review examines the interactions between RUNX2 and SATB2 in a network necessary for normal bone development and the circumstances in which the expression of RUNX2 and SATB2 in the wrong place and time leads to carcinogenesis.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Angelica Ortiz
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
SATB2 overexpression promotes oral squamous cell carcinoma progression by up-regulating NOX4. Cell Signal 2021; 82:109968. [PMID: 33675939 DOI: 10.1016/j.cellsig.2021.109968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 12/28/2022]
Abstract
While atypical expression of special AT-rich sequence-binding protein 2 (SATB2) has been approved associated with tumor progression, metastasis and unfavourable prognosis in various carcinomas. However, in oral squamous cell carcinoma (OSCC), both the expressive state and associated functions of SATB2's are still undefined. Here we show that, in clinical samples from a retrospective cohort of 58 OSCC patients, high expression of SATB2 is associated with poor prognosis of OSCC patients. In this study, we investigated SATB2 is highly expressed in OSCC tissues and cell lines, which can promote OSCC cells' proliferation, migration, invasion and tumor growth. According to sequencing results based on previous literature, we identified NOX4 is a bona fide downstream target of SATB2, when it was knockdown, OSCC's proliferation can be partially suppressed. Furthermore, NOX4 knockdown inhibits tumorigenicity, which can be rescued partially by ectopic expression of SATB2 in HNSCC cell line, and vice versa. Collectively, our findings not only indicate overexpression of SATB2 triggers the proliferative, migratory and invasive mechanisms which are important in the malignant phenotype of OSCC, but also identify NOX4 as the downstream gene for SATB2. These findings indicate that SATB2 may play a key role in OSCC tumorigenicity and may be a future target for the development of new therapeutic regimens.
Collapse
|
18
|
Fazio M, van Rooijen E, Dang M, van de Hoek G, Ablain J, Mito JK, Yang S, Thomas A, Michael J, Fabo T, Modhurima R, Pessina P, Kaufman CK, Zhou Y, White RM, Zon LI. SATB2 induction of a neural crest mesenchyme-like program drives melanoma invasion and drug resistance. eLife 2021; 10:64370. [PMID: 33527896 PMCID: PMC7880683 DOI: 10.7554/elife.64370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Recent genomic and scRNA-seq analyses of melanoma demonstrated a lack of recurrent genetic drivers of metastasis, while identifying common transcriptional states correlating with invasion or drug resistance. To test whether transcriptional adaptation can drive melanoma progression, we made use of a zebrafish mitfa:BRAFV600E;tp53-/- model, in which malignant progression is characterized by minimal genetic evolution. We undertook an overexpression-screen of 80 epigenetic/transcriptional regulators and found neural crest-mesenchyme developmental regulator SATB2 to accelerate aggressive melanoma development. Its overexpression induces invadopodia formation and invasion in zebrafish tumors and human melanoma cell lines. SATB2 binds and activates neural crest-regulators, including pdgfab and snai2. The transcriptional program induced by SATB2 overlaps with known MITFlowAXLhigh and AQP1+NGFR1high drug-resistant states and functionally drives enhanced tumor propagation and resistance to Vemurafenib in vivo. In summary, we show that melanoma transcriptional rewiring by SATB2 to a neural crest mesenchyme-like program can drive invasion and drug resistance in autochthonous tumors.
Collapse
Affiliation(s)
- Maurizio Fazio
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Ellen van Rooijen
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Michelle Dang
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Glenn van de Hoek
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Julien Ablain
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Jeffrey K Mito
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Brigham and Women's Hospital, Department of Pathology, Boston, United States
| | - Song Yang
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Andrew Thomas
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Jonathan Michael
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Tania Fabo
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Rodsy Modhurima
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Patrizia Pessina
- Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Charles K Kaufman
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, Saint Louis, United States.,Department of Developmental Biology, Washington University in Saint Louis, St. Louis, United States
| | - Yi Zhou
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| | - Richard M White
- Memorial Sloan Kettering Cancer Center and Weill-Cornell Medical College, New York, United States
| | - Leonard I Zon
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States.,Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
19
|
Huang X, Chen Q, Luo W, Pakvasa M, Zhang Y, Zheng L, Li S, Yang Z, Zeng H, Liang F, Zhang F, Hu DA, Qin KH, Wang EJ, Qin DS, Reid RR, He TC, Athiviraham A, El Dafrawy M, Zhang H. SATB2: A versatile transcriptional regulator of craniofacial and skeleton development, neurogenesis and tumorigenesis, and its applications in regenerative medicine. Genes Dis 2020; 9:95-107. [PMID: 35005110 PMCID: PMC8720659 DOI: 10.1016/j.gendis.2020.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/30/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
SATB2 (special AT-rich sequence-binding protein 2) is a member of the special AT-rich binding protein family. As a transcription regulator, SATB2 mainly integrates higher-order chromatin organization. SATB2 expression appears to be tissue- and stage-specific, and is governed by several cellular signaling molecules and mediators. Expressed in branchial arches and osteoblast-lineage cells, SATB2 plays a significant role in craniofacial pattern and skeleton development. In addition to regulating osteogenic differentiation, SATB2 also displays versatile functions in neural development and cancer progression. As an osteoinductive factor, SATB2 holds great promise in improving bone regeneration toward bone defect repair. In this review, we have summarized our current understanding of the physiological and pathological functions of SATB2 in craniofacial and skeleton development, neurogenesis, tumorigenesis and regenerative medicine.
Collapse
Affiliation(s)
- Xia Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Qiuman Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Wenping Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,The Pritzker School of Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Shuang Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Zhuohui Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Huan Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fang Liang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
| | - Fugui Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Daniel A Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin H Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric J Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - David S Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, PR China
| |
Collapse
|
20
|
Roy SK, Shrivastava A, Srivastav S, Shankar S, Srivastava RK. SATB2 is a novel biomarker and therapeutic target for cancer. J Cell Mol Med 2020; 24:11064-11069. [PMID: 32885593 PMCID: PMC7576221 DOI: 10.1111/jcmm.15755] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Several studies have confirmed the involvement of cancer stem cells (CSC) in tumour progression, metastasis, drug resistance and cancer relapse. SATB2 (special AT-rich binding protein-2) acts as a transcriptional co-factor and modulates chromatin architecture to regulate gene expression. The purpose of this review was to discuss the pathophysiological roles of SATB2 and assess whether it could be used as a therapeutic target for cancer. SATB2 modulated the expression of those genes which regulated pluripotency and self-renewal. Overexpression of SATB2 gene in normal epithelial cells was shown to induce transformation, as a result transformed cells gained CSC's characteristics by expressing stem cell markers and pluripotency maintaining factors, suggesting its role as an oncogene. In addition, SATB2 induced epithelial-mesenchymal transition (EMT) and metastasis. Interestingly, the expression of SATB2 was positively correlated with the activation of β-catenin/TCF-LEF pathway. Furthermore, SATB2 silencing inhibited EMT and their positive regulators, and tumour growth, and suppressed the expression of stem cell markers, pluripotency maintaining factors, cell cycle and cell survival genes, and TCF/LEF targets. Based on the cancer genome atlas (TCGA) expression data and published papers, SATB2 alone or in combination with other proteins could be used a diagnostic biomarker for cancer. Although there is no pharmacological inhibitor of SATB2, studies using genetic approaches suggest that SATB2 could be a potential target for cancer treatment and prevention.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | | | - Sudesh Srivastav
- Department of Biostatistics and Data ScienceSchool of Public Health and Tropical MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Sharmila Shankar
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLAUSA
- Southeast Louisiana Veterans Health Care SystemNew OrleansLAUSA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| |
Collapse
|
21
|
Lee W, Li X, Chandan VS. Hepatocellular carcinomas can be Special AT-rich sequence-binding protein 2 positive: an important diagnostic pitfall. Hum Pathol 2020; 105:47-52. [PMID: 32946879 DOI: 10.1016/j.humpath.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022]
Abstract
Special AT-rich sequence-binding protein 2 (SATB2) is a sensitive and specific marker for tumors originating with the colon and appendix. It is now commonly used in surgical pathology, while working up carcinomas of unknown primary. We had anecdotally encountered occasional hepatocellular carcinomas (HCCs) that were SATB2 positive. Immunohistochemical expression of SATB2 in HCC has not yet been examined in detail. In this study, we evaluated SATB2 expression in 46 HCCs. Nineteen (41%) of 46 HCCs were positive for SATB2. SATB2 expression in HCCs was more commonly seen in poorly differentiated tumors (11 of 13 cases, 85%) than well and moderately differentiated tumors (8 of 33 cases, 24%), p value = 0.0001. No other statistically significant correlations were observed (p > 0.05). There were no other statistically significant correlations between SATB2 expression and age, gender, background liver disease, and cirrhosis (p > 0.05). Results of our study show that a significant subset (41%) of HCCs can be SATB2 positive. Awareness of this phenomenon is important as SATB2 expression in a liver tumor does not completely exclude a diagnosis of HCC.
Collapse
Affiliation(s)
- Whayoung Lee
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Xiaodong Li
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Vishal S Chandan
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
22
|
Tian H, She Z, Gao X, Wang W, Tian H. MicroRNA-31 regulates dental epithelial cell proliferation by targeting Satb2. Biochem Biophys Res Commun 2020; 532:321-328. [PMID: 32873389 DOI: 10.1016/j.bbrc.2020.07.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) exhibit strong potential clinical application owing to their extensive regulation and flexible delivery properties. MicroRNA-31 (miR-31) is an evolutionarily conserved miRNA expressed during tooth development, and it is highly expressed in mouse incisor epithelium. The specific role of miR-31 in odontogenesis has not been elucidated comprehensively, and the aim of the present study was to investigate its activity. Our results showed that miR-31 suppressed LS8 cell proliferation by inhibiting the cell cycle at the G1/S transition. Mutation of Special AT-rich sequence-binding protein 2 (SATB2) gene is responsible for human SATB2-associated syndrome (SAS), which is often accompanied by dental abnormities. Here, it was identified as a direct target of miR-31 in LS8 cells and a promoter of cell proliferation. The expression and distribution of SATB2 in mouse molars and incisors were explored using immunofluorescence, which showed strong signals in the nuclei of incisor epithelial cells and weak signals in the cytoplasm of molar epithelial cells. Moreover, rescue experiments demonstrated that Satb2 could mitigate the inhibitory effect of miR-31 on cell proliferation by promoting the expression of CDK4. Collectively, our results suggested that miR-31 regulates dental epithelial cell proliferation by targeting Satb2, highlighting the biological importance of miR-31 in odontogenesis.
Collapse
Affiliation(s)
- Huizhong Tian
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China
| | - Ziwei She
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, PR China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China
| | - Weiping Wang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, PR China.
| | - Hua Tian
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China.
| |
Collapse
|
23
|
Yu W, Roy SK, Ma Y, LaVeist TA, Shankar S, Srivastava RK. Higher expression of SATB2 in hepatocellular carcinoma of African Americans determines more aggressive phenotypes than those of Caucasian Americans. J Cell Mol Med 2019; 23:7999-8009. [PMID: 31602781 PMCID: PMC6850930 DOI: 10.1111/jcmm.14652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022] Open
Abstract
In the United States, Hepatocellular Carcinoma (HCC) incidence has tripled over the past two decades. The disease has disproportionately affected minority and disadvantaged populations. The purpose of this study was to examine the expression of SATB2 gene in HCC cells derived from African Americans (AA) and Caucasian Americans (CA) and assess its oncogenic potential by measuring cell viability, spheroid formation, epithelial‐mesenchymal transition (EMT), stem cell markers and pluripotency maintaining factors in cancer stem cells (CSCs). We compared the expression of SATB2 in human primary hepatocytes, HCC cells derived from AA and CA, and HCC CSCs. Hepatocellular carcinoma cells derived from AA expressed the higher level of SATB2 than those from CA. By comparison, normal human hepatocytes did not express SATB2. Higher expression of SATB2 in HCC cells from AA was associated with greater growth rate, cell viability, colony formation and EMT characteristics than those from CA. Knockout of SATB2 in CSCs by Crispr/Cas9 technique significantly inhibited the expression of SATB2 gene, stem cell markers (CD24, CD44 and CD133), pluripotency maintaining factors (c‐Myc, KLF4, SOX2 and OCT4), and EMT compared with non‐targeting control group. The expression of SATB2 was negatively correlated with miR34a. SATB2 rescued the miR‐34a‐mediated inhibition of CSC's viability. These data suggest that SATB2 is an oncogenic factor, and its higher expression may explain the disparity in HCC outcomes among AA.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Sanjit K Roy
- Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA
| | - Yiming Ma
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Thomas A LaVeist
- Department of Health Policy and Management, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Sharmila Shankar
- Kansas City VA Medical Center, Kansas City, MO, USA.,Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA, USA
| | - Rakesh K Srivastava
- Kansas City VA Medical Center, Kansas City, MO, USA.,Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, USA.,Department of Genetics, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA, USA
| |
Collapse
|
24
|
Chen QY, Des Marais T, Costa M. Deregulation of SATB2 in carcinogenesis with emphasis on miRNA-mediated control. Carcinogenesis 2019; 40:393-402. [PMID: 30916759 PMCID: PMC6514447 DOI: 10.1093/carcin/bgz020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/26/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
The special AT-rich DNA binding protein (SATB2) is a nuclear matrix-associated protein and an important transcription factor for biological development, gene regulation and chromatin remodeling. Aberrant regulation of SATB2 has been found to highly correlate with various types of cancers including lung, colon, prostate, breast, gastric and liver. Recent studies have revealed that a subset of small non-coding RNAs, termed microRNAs (miRNAs), are important regulators of SATB2 function. As post-transcriptional regulators, miRNAs have been found to have fundament importance maintaining normal cellular development. Evidence suggests that multiple miRNAs, including miR-31, miR-34, miR-182, miR-211, miR-599, are capable of regulating SATB2 in cancers of the lung, liver, colon and breast. This review examines the molecular functions of SATB2 and miRNAs in the text of cancer development and potential strategies for cancer therapy with a focus on systemic miRNA delivery.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Thomas Des Marais
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Le Page C, Köbel M, Meunier L, Provencher DM, Mes-Masson AM, Rahimi K. A COEUR cohort study of SATB2 expression and its prognostic value in ovarian endometrioid carcinoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 5:177-188. [PMID: 30924313 PMCID: PMC6648975 DOI: 10.1002/cjp2.131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to describe the expression of special AT-rich sequence-binding protein 2 (SATB2) in ovarian endometrioid carcinoma (EC). SATB2 is a nuclear matrix-associated transcription factor that is associated with abnormal expression in certain cancers but has not been reported for ovarian carcinoma. SATB2 mRNA and protein expression was first assessed in a pilot cohort of 26 samples by Affymetrix microarray and by routine immunohistochemistry on a small tissue microarray. A large multicenter validation cohort representing the well-characterized cases of 235 ovarian EC from the Canadian Ovarian Experimental Unified Resource (COEUR) was then used to validate this result and to assess the prognostic impact of SATB2 expression. SATB2 staining was scored as negative, weak, moderate, and strong intensity, and by percentage of stained cells. No SATB2 expression was observed in clear cell carcinomas but 10% (n = 3) of the ECs in the pilot cohort showed SATB2 expression. In the validation cohort, strong expression was observed in 11% of ECs, while weak or moderate expression levels were detected in 12% of cases. Evaluation of SATB2 expression with clinicopathological parameters revealed an association with patient age and Federation International of Gynecology and Obstetrics grade but not with disease stage or postoperative residual disease. Any expression of SATB2, independent of intensity, was also associated with longer survival and improved progression-free survival with hazard ratio (HR) = 0.14 (95% CI 0.03-0.56) and HR = 0.16 (95% CI 0.02-1.24) respectively. A greater beneficial effect was observed in patients with stage III/IV disease compared to patients with stage I/II disease. Furthermore, direct comparison of SATB2 with other reported prognostic biomarkers such as progesterone receptor, CDX2 and β-catenin within this cohort showed that SATB2 had the strongest association with survival. Given the current lack of accurate prognostic factors for these patients, SATB2 has promising clinical utility and warrants further study.
Collapse
Affiliation(s)
- Cécile Le Page
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Liliane Meunier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal, Canada
| | - Diane M Provencher
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal, Canada.,Division of Gynecologic-Oncology, CHUM, Montreal, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal, Canada.,Department of Medicine, Université de Montréal, Montreal, Canada
| | - Kurosh Rahimi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal, Canada.,Department of Pathology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Canada
| |
Collapse
|
26
|
Naik R, Galande S. SATB family chromatin organizers as master regulators of tumor progression. Oncogene 2019; 38:1989-2004. [PMID: 30413763 DOI: 10.1038/s41388-018-0541-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
SATB (Special AT-rich binding protein) family proteins have emerged as key regulators that integrate higher-order chromatin organization with the regulation of gene expression. Studies over the past decade have elucidated the specific roles of SATB1 and SATB2, two closely related members of this family, in cancer progression. SATB family chromatin organizers play diverse and important roles in regulating the dynamic equilibrium of apoptosis, cell invasion, metastasis, proliferation, angiogenesis, and immune modulation. This review highlights cellular and molecular events governed by SATB1 influencing the structural organization of chromatin and interacting with several co-activators and co-repressors of transcription towards tumor progression. SATB1 expression across tumor cell types generates cellular and molecular heterogeneity culminating in tumor relapse and metastasis. SATB1 exhibits dynamic expression within intratumoral cell types regulated by the tumor microenvironment, which culminates towards tumor progression. Recent studies suggested that cell-specific expression of SATB1 across tumor recruited dendritic cells (DC), cytotoxic T lymphocytes (CTL), T regulatory cells (Tregs) and tumor epithelial cells along with tumor microenvironment act as primary determinants of tumor progression and tumor inflammation. In contrast, SATB2 is differentially expressed in an array of cancer types and is involved in tumorigenesis. Survival analysis for patients across an array of cancer types correlated with expression of SATB family chromatin organizers suggested tissue-specific expression of SATB1 and SATB2 contributing to disease prognosis. In this context, it is pertinent to understand molecular players, cellular pathways, genetic and epigenetic mechanisms governed by cell types within tumors regulated by SATB proteins. We propose that patient survival analysis based on the expression profile of SATB chromatin organizers would facilitate their unequivocal establishment as prognostic markers and therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Rutika Naik
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
27
|
Self-renewal signaling pathways in breast cancer stem cells. Int J Biochem Cell Biol 2019; 107:140-153. [DOI: 10.1016/j.biocel.2018.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
|
28
|
Chen QY, Li J, Sun H, Wu F, Zhu Y, Kluz T, Jordan A, DesMarais T, Zhang X, Murphy A, Costa M. Role of miR-31 and SATB2 in arsenic-induced malignant BEAS-2B cell transformation. Mol Carcinog 2018; 57:968-977. [PMID: 29603397 PMCID: PMC6588163 DOI: 10.1002/mc.22817] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Arsenic is a naturally occurring and highly potent metalloid known to elicit serious public health concerns. Today, approximately 200 million people around the globe are exposed to arsenic-contaminated drinking water at levels greater than the World Health Organization's recommended limit of 10 parts per billion. As a class I human carcinogen, arsenic exposure is known to elicit various cancers, including lung, skin, liver, and kidney. Current evidence suggests that arsenic is capable of inducing both genotoxic and cytotoxic injury, as well as activating epigenetic pathways to induce carcinogenesis. Our study identifies a novel pathway that is implicated in arsenic-induced carcinogenesis. Arsenic down-regulated miRNA-31 and the release of this inhibition caused overexpression of special AT-rich sequence-binding protein 2 (SATB2). Arsenic is known to disrupt miRNA expression, and here we report for the first time that arsenic is capable of inhibiting miR-31 expression. As a direct downstream target of miR-31, SATB2 is a prominent transcription factor, and nuclear matrix binding protein implicated in many types of human diseases including lung cancer. Results from this study show that arsenic induces the overexpressing SATB2 by inhibiting miR-31 expression, which blocks the translation of SATB2 mRNA, since levels of SATB2 mRNA remain the same but protein levels decrease. Overexpression of SATB2 induces malignant transformation of human bronchial epithelial (BEAS-2B) cells indicating the importance of the expression of miR-31 in preventing carcinogenesis by suppressing SATB2 protein levels.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Jinquan Li
- Brain and Cognitive Dysfunction Research Center, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical college, Wuhan University of Science and Technology, Wuhan, China
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Feng Wu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Yusha Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Thomas Kluz
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Ashley Jordan
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Thomas DesMarais
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Xiaoru Zhang
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|
29
|
Yu W, Ma Y, Shankar S, Srivastava RK. Chronic ethanol exposure of human pancreatic normal ductal epithelial cells induces cancer stem cell phenotype through SATB2. J Cell Mol Med 2018; 22:3920-3928. [PMID: 29761897 PMCID: PMC6050497 DOI: 10.1111/jcmm.13666] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/31/2018] [Indexed: 12/13/2022] Open
Abstract
The incidence of pancreatic cancer is on the rise. Risk factors for pancreatic cancer include alcohol toxicity and metabolic conditions such as obesity, hypertension, dyslipidaemia, insulin resistance and type 2 diabetes. However, the molecular mechanism by which chronic alcohol consumption contributes to pancreatic cancer is not well understood. The purpose of the study was to demonstrate the effects of long-term chronic ethanol exposure on the transformation of human pancreatic normal ductal epithelial (HPNE) cells. Our data showed that ethanol-transformed HPNE cells were more progressively transformed exhibiting spheroids and colonies, and anchorage-independent growth. These transformed cells contained high levels of reactive oxygen species and induced SATB2 expression. Furthermore, during ethanol-induced cellular transformation, cells gained the phenotypes of cancer stem cells (CSCs) by expressing pluripotency maintaining factors (Oct4, Sox2, cMyc and KLF4) and stem cell markers (CD24, CD44 and CD133). Ethanol-induced SATB2 can bind to the promoters of KLF4, Oct4, cMyc, Sox2, Bcl-2 and XIAP genes. Suppression of SATB2 expression in ethanol-transformed HPNE cells inhibited cell proliferation, colony formation and markers of CSCs and pluripotency. These data suggest that chronic alcohol consumption may contribute toward the development of pancreatic cancer by converting HPNE cells to cancer stem-like cells.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Yiming Ma
- Kansas City VA Medical Center, Kansas City, MO, USA
| | - Sharmila Shankar
- Kansas City VA Medical Center, Kansas City, MO, USA
- Department of Pathology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Rakesh K Srivastava
- Kansas City VA Medical Center, Kansas City, MO, USA
- Department of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
30
|
Chen QY, Costa M. Oncogenic and tumor suppressive roles of special AT-rich sequence-binding protein. J Carcinog 2018; 17:2. [PMID: 30123095 PMCID: PMC6071479 DOI: 10.4103/jcar.jcar_8_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/28/2017] [Indexed: 12/28/2022] Open
Abstract
In recent years, research efforts have been centered on the functional roles of special AT-rich sequence-binding protein (SATB2) in cancer development. Existing studies differ in the types of tumor tissues and cell lines used, resulting in mixed results, which hinder the clear understanding of whether SATB2 acts as a tumor suppressor or promoter. Literature search for this review consisted of a basic search on PubMed using keywords "SATB2" and "special AT-rich sequence-binding protein 2." Each article was then selected for further examination based on relevance of the title. In consideration to possible missing data from a primary PubMed search, after coding for relevant information, articles listed in the references section were filtered for further review. The current literature suggests that SATB2 can act both as a tumor suppressor and as a promoter since it can be regulated by multiple factors and is able to target different downstream genes in various types of cancer cell lines as well as tissues. Future studies should focus on its contradictory roles in different types of tumors. This paper provides a comprehensive review of currently available research on the role of SATB2 in different cancer cells and tissues and may provide some insight into the contradictory roles of SATB2 in cancer development.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, NY, USA
| |
Collapse
|
31
|
Nilendu P, Kumar A, Kumar A, Pal JK, Sharma NK. Breast cancer stem cells as last soldiers eluding therapeutic burn: A hard nut to crack. Int J Cancer 2018; 142:7-17. [PMID: 28722143 DOI: 10.1002/ijc.30898] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/13/2017] [Indexed: 12/26/2022]
Abstract
Cancer stem cells (CSCs) are found in many cancer types, including breast carcinoma. Breast cancer stem cells (BCSCs) are considered as seed of cancer formation and they are associated with metastasis and genotoxic drug resistance. Several studies highlighted the presence of BCSCs in tumor microenvironment and they are accentuated with several carcinoma events including metastasis and resistance to genotoxic drugs and they also rebound after genotoxic burn. Stemness properties of a small population of cells in carcinoma have provided clues regarding the role of tumor microenvironment in tumor pathophysiology. Hence, insights in cancer stem cell biology with respect to molecular signaling, genetics and epigenetic behavior of CSCs have been used to modulate tumor drug resistance due to genotoxic drugs and signaling protein inhibitors. This review summarizes major scientific breakthroughs in understanding the contribution of BCSCs towards tumor's capability to endure destruction inflicted by molecular as well as genotoxic drugs.
Collapse
Affiliation(s)
- Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Ajay Kumar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Azad Kumar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Jayanta K Pal
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| |
Collapse
|
32
|
SATB2/β-catenin/TCF-LEF pathway induces cellular transformation by generating cancer stem cells in colorectal cancer. Sci Rep 2017. [PMID: 28887549 DOI: 10.1038/s41598‐017‐05458‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent studies have demonstrated the involvement of colorectal cancer (CRC) stem cells (CSC) in transformation, cancer progression and metastasis. The main goal of this paper was to examine the molecular mechanisms by which SATB2 induced malignant transformation of colorectal epithelial cells. SATB2 induced malignant transformation and these transformed cells gained the characteristics of CSCs by expressing stem cell markers (CD44, CD133, LGR5 and DCLK1) and transcription factors (c-Myc, Nanog and Sox2). Overexpression of SATB2 in normal colorectal epithelial cells increased cell motility, migration and invasion, which were associated with an increase in N-cadherin and Zeb1, and decrease in E-cadherin expression. SATB2 overexpression also upregulated XIAP and cyclin D1, suggesting its role in cell survival and cell cycle. Furthermore, the expression of SATB2 was positively correlated with β-catenin expression in CRC. In contrary, depletion of SATB2 inhibited cell proliferation, colony formation, cell motility and expression of β-catenin, Snail, Slug, Zeb1 and N-cadherin, and upregulated E-cadherin. Furthermore, SATB2 silencing inhibited the expression of stem cell markers, pluripotency maintaining transcription factors, cell cycle and cell proliferation/survival genes and TCF/LEF targets. Finally, β-catenin/TCF-LEF pathway mediated the biological effects of SATB2 in CSCs. These studies support the role of SATB2/β-catenin/TCF-LEF pathway in transformation and carcinogenesis.
Collapse
|
33
|
Yu W, Ma Y, Shankar S, Srivastava RK. SATB2/β-catenin/TCF-LEF pathway induces cellular transformation by generating cancer stem cells in colorectal cancer. Sci Rep 2017; 7:10939. [PMID: 28887549 PMCID: PMC5591219 DOI: 10.1038/s41598-017-05458-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 05/31/2017] [Indexed: 12/11/2022] Open
Abstract
Recent studies have demonstrated the involvement of colorectal cancer (CRC) stem cells (CSC) in transformation, cancer progression and metastasis. The main goal of this paper was to examine the molecular mechanisms by which SATB2 induced malignant transformation of colorectal epithelial cells. SATB2 induced malignant transformation and these transformed cells gained the characteristics of CSCs by expressing stem cell markers (CD44, CD133, LGR5 and DCLK1) and transcription factors (c-Myc, Nanog and Sox2). Overexpression of SATB2 in normal colorectal epithelial cells increased cell motility, migration and invasion, which were associated with an increase in N-cadherin and Zeb1, and decrease in E-cadherin expression. SATB2 overexpression also upregulated XIAP and cyclin D1, suggesting its role in cell survival and cell cycle. Furthermore, the expression of SATB2 was positively correlated with β-catenin expression in CRC. In contrary, depletion of SATB2 inhibited cell proliferation, colony formation, cell motility and expression of β-catenin, Snail, Slug, Zeb1 and N-cadherin, and upregulated E-cadherin. Furthermore, SATB2 silencing inhibited the expression of stem cell markers, pluripotency maintaining transcription factors, cell cycle and cell proliferation/survival genes and TCF/LEF targets. Finally, β-catenin/TCF-LEF pathway mediated the biological effects of SATB2 in CSCs. These studies support the role of SATB2/β-catenin/TCF-LEF pathway in transformation and carcinogenesis.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA
| | - Yiming Ma
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA.,Department of Pathology, University of Missouri-School of Medicine, Kansas City, MO, 64108, USA.,Stanley S. Scott Cancer Center, Department of Genetics, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA 70112, United States
| | - Rakesh K Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 66128, USA. .,Department of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, 64108, USA. .,Stanley S. Scott Cancer Center, Department of Genetics, Louisiana State University Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA 70112, United States.
| |
Collapse
|