1
|
Hoffmann S, Roeth R, Diebold S, Gogel J, Hassel D, Just S, Rappold GA. Identification and Tissue-Specific Characterization of Novel SHOX-Regulated Genes in Zebrafish Highlights SOX Family Members Among Other Genes. Front Genet 2021; 12:688808. [PMID: 34122528 PMCID: PMC8191631 DOI: 10.3389/fgene.2021.688808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
SHOX deficiency causes a spectrum of clinical phenotypes related to skeletal dysplasia and short stature, including Léri-Weill dyschondrosteosis, Langer mesomelic dysplasia, Turner syndrome, and idiopathic short stature. SHOX controls chondrocyte proliferation and differentiation, bone maturation, and cellular growth arrest and apoptosis via transcriptional regulation of its direct target genes NPPB, FGFR3, and CTGF. However, our understanding of SHOX-related pathways is still incomplete. To elucidate the underlying molecular mechanisms and to better understand the broad phenotypic spectrum of SHOX deficiency, we aimed to identify novel SHOX targets. We analyzed differentially expressed genes in SHOX-overexpressing human fibroblasts (NHDF), and confirmed the known SHOX target genes NPPB and FGFR among the most strongly regulated genes, together with 143 novel candidates. Altogether, 23 genes were selected for further validation, first by whole-body characterization in developing shox-deficient zebrafish embryos, followed by tissue-specific expression analysis in three shox-expressing zebrafish tissues: head (including brain, pharyngeal arches, eye, and olfactory epithelium), heart, and pectoral fins. Most genes were physiologically relevant in the pectoral fins, while only few genes were also significantly regulated in head and heart tissue. Interestingly, multiple sox family members (sox5, sox6, sox8, and sox18) were significantly dysregulated in shox-deficient pectoral fins together with other genes (nppa, nppc, cdkn1a, cdkn1ca, cyp26b1, and cy26c1), highlighting an important role for these genes in shox-related growth disorders. Network-based analysis integrating data from the Ingenuity pathways revealed that most of these genes act in a common network. Our results provide novel insights into the genetic pathways and molecular events leading to the clinical manifestation of SHOX deficiency.
Collapse
Affiliation(s)
- Sandra Hoffmann
- Department of Human Molecular Genetics, Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ralph Roeth
- Department of Human Molecular Genetics, Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Sabrina Diebold
- Clinic for Internal Medicine II - Molecular Cardiology, University Hospital Ulm, Ulm, Germany
| | - Jasmin Gogel
- Department of Human Molecular Genetics, Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - David Hassel
- Department of Internal Medicine III - Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Steffen Just
- Clinic for Internal Medicine II - Molecular Cardiology, University Hospital Ulm, Ulm, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
2
|
Network-driven discovery yields new insight into Shox2-dependent cardiac rhythm control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194702. [PMID: 33706013 DOI: 10.1016/j.bbagrm.2021.194702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022]
Abstract
The homeodomain transcription factor SHOX2 is involved in the development and function of the heart's primary pacemaker, the sinoatrial node (SAN), and has been associated with cardiac conduction-related diseases such as atrial fibrillation and sinus node dysfunction. To shed light on Shox2-dependent genetic processes involved in these diseases, we established a murine embryonic stem cell (ESC) cardiac differentiation model to investigate Shox2 pathways in SAN-like cardiomyocytes. Differential RNA-seq-based expression profiling of Shox2+/+ and Shox2-/- ESCs revealed 94 dysregulated transcripts in Shox2-/- ESC-derived SAN-like cells. Of these, 15 putative Shox2 target genes were selected for further validation based on comparative expression analysis with SAN- and right atria-enriched genes. Network-based analyses, integrating data from the Mouse Organogenesis Cell Atlas and the Ingenuity pathways, as well as validation in mouse and zebrafish models confirmed a regulatory role for the novel identified Shox2 target genes including Cav1, Fkbp10, Igfbp5, Mcf2l and Nr2f2. Our results indicate that genetic networks involving SHOX2 may contribute to conduction traits through the regulation of these genes.
Collapse
|
3
|
Li Y, Wang K, Li Q, Zhang H. Biological pacemaker: from biological experiments to computational simulation. J Zhejiang Univ Sci B 2020; 21:524-536. [PMID: 32633107 DOI: 10.1631/jzus.b1900632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pacemaking dysfunction has become a significant disease that may contribute to heart rhythm disorders, syncope, and even death. Up to now, the best way to treat it is to implant electronic pacemakers. However, these have many disadvantages such as limited battery life, infection, and fixed pacing rate. There is an urgent need for a biological pacemaker (bio-pacemaker). This is expected to replace electronic devices because of its low risk of complications and the ability to respond to emotion. Here we survey the contemporary development of the bio-pacemaker by both experimental and computational approaches. The former mainly includes gene therapy and cell therapy, whilst the latter involves the use of multi-scale computer models of the heart, ranging from the single cell to the tissue slice. Up to now, a bio-pacemaker has been successfully applied in big mammals, but it still has a long way from clinical uses for the treatment of human heart diseases. It is hoped that the use of the computational model of a bio-pacemaker may accelerate this process. Finally, we propose potential research directions for generating a bio-pacemaker based on cardiac computational modeling.
Collapse
Affiliation(s)
- Yacong Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qince Li
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,Peng Cheng Laboratory, Shenzhen 518052, China
| | - Henggui Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China.,School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.,Peng Cheng Laboratory, Shenzhen 518052, China
| |
Collapse
|
4
|
Schmitteckert S, Ziegler C, Rappold GA, Niesler B, Rolletschek A. Molecular Characterization of Embryonic Stem Cell-Derived Cardiac Neural Crest-Like Cells Revealed a Spatiotemporal Expression of an Mlc-3 Isoform. Int J Stem Cells 2020; 13:65-79. [PMID: 31887845 PMCID: PMC7119212 DOI: 10.15283/ijsc19069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/11/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Objectives Pluripotent embryonic stem (ES) cells represent a perfect model system for the investigation of early developmental processes. Besides their differentiation into derivatives of the three primary germ layers, they can also be differentiated into derivatives of the ‘fourth’ germ layer, the neural crest (NC). Due to its multipotency, extensive migration and outstanding capacity to generate a remarkable number of different cell types, the NC plays a key role in early developmental processes. Cardiac neural crest (CNC) cells are a subpopulation of the NC, which are of crucial importance for precise cardiovascular and pharyngeal glands’ development. CNC-associated malformations are rare, but always severe and life-threatening. Appropriate cell models could help to unravel underlying pathomechanisms and to develop new therapeutic options for relevant heart malformations. Methods Murine ES cells were differentiated according to a mesodermal-lineage promoting protocol. Expression profiles of ES cell-derived progeny at various differentiation stages were investigated on transcript and protein level. Results Comparative expression profiling of murine ES cell multilineage progeny versus undifferentiated ES cells confirmed differentiation into known cell derivatives of the three primary germ layers and provided evidence that ES cells have the capacity to differentiate into NC/CNC-like cells. Applying the NC/CNC cell-specific marker, 4E9R, an unambiguous identification of ES cell-derived NC/CNC-like cells was achieved. Conclusions Our findings will facilitate the establishment of an ES cell-derived CNC cell model for the investigation of molecular pathways during cardiac development in health and disease.
Collapse
Affiliation(s)
- Stefanie Schmitteckert
- Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany.,Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Cornelia Ziegler
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Gudrun A Rappold
- Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Niesler
- Institute of Human Genetics, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexandra Rolletschek
- Institute for Biological Interfaces 1, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.,Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
5
|
Abstract
The rate and rhythm of heart muscle contractions are coordinated by the cardiac conduction system (CCS), a generic term for a collection of different specialized muscular tissues within the heart. The CCS components initiate the electrical impulse at the sinoatrial node, propagate it from atria to ventricles via the atrioventricular node and bundle branches, and distribute it to the ventricular muscle mass via the Purkinje fibre network. The CCS thereby controls the rate and rhythm of alternating contractions of the atria and ventricles. CCS function is well conserved across vertebrates from fish to mammals, although particular specialized aspects of CCS function are found only in endotherms (mammals and birds). The development and homeostasis of the CCS involves transcriptional and regulatory networks that act in an embryonic-stage-dependent, tissue-dependent, and dose-dependent manner. This Review describes emerging data from animal studies, stem cell models, and genome-wide association studies that have provided novel insights into the transcriptional networks underlying CCS formation and function. How these insights can be applied to develop disease models and therapies is also discussed.
Collapse
|
6
|
Testori A, Lasorsa VA, Cimmino F, Cantalupo S, Cardinale A, Avitabile M, Limongelli G, Russo MG, Diskin S, Maris J, Devoto M, Keavney B, Cordell HJ, Iolascon A, Capasso M. Exploring Shared Susceptibility between Two Neural Crest Cells Originating Conditions: Neuroblastoma and Congenital Heart Disease. Genes (Basel) 2019; 10:genes10090663. [PMID: 31480262 PMCID: PMC6771154 DOI: 10.3390/genes10090663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
In the past years, genome wide association studies (GWAS) have provided evidence that inter-individual susceptibility to diverse pathological conditions can reveal a common genetic architecture. Through the analysis of congenital heart disease (CHD) and neuroblastoma (NB) GWAS data, we aimed to dissect the genetic susceptibility shared between these conditions, which are known to arise from neural crest cell (NCC) migration or development abnormalities, via identification and functional characterization of common regions of association. Two loci (2q35 and 3q25.32) harbor single nucleotide polymorphisms (SNPs) that are associated at a p-value < 10-3 with conotruncal malformations and ventricular septal defect respectively, as well as with NB. In addition, the lead SNP in 4p16.2 for atrial septal defect and the lead SNP in 3q25.32 for tetralogy of Fallot are less than 250 Kb distant from the lead SNPs for NB at the same genomic regions. Some of these shared susceptibility loci regulate the expression of relevant genes involved in NCC formation and developmental processes (such as BARD1, MSX1, and SHOX2) and are enriched in several epigenetic markers from NB and fetal heart cell lines. Although the clinical correlation between NB and CHD is unclear, our exploration of a possible common genetic basis between NB and a subset of cardiac malformations can help shed light on their shared embryological origin and pathogenetic mechanisms.
Collapse
Affiliation(s)
- Alessandro Testori
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Vito A Lasorsa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Flora Cimmino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Sueva Cantalupo
- IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, 80143 Naples, Italy
| | - Antonella Cardinale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Marianna Avitabile
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Giuseppe Limongelli
- Division of Cardiology, Università degli Studi della Campania "Luigi Vanvitelli" - AO dei Colli, Presidio Monaldi, 80121 Naples, Italy
| | - Maria Giovanna Russo
- Division of Cardiology, Università degli Studi della Campania "Luigi Vanvitelli" - AO dei Colli, Presidio Monaldi, 80121 Naples, Italy
| | - Sharon Diskin
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Maris
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcella Devoto
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Translational and Precision Medicine, University of Rome "La Sapienza", 00185 Rome, Italy
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M20 4BX, UK
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy.
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy.
- IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, 80143 Naples, Italy.
| |
Collapse
|
7
|
Hoffmann S, Paone C, Sumer SA, Diebold S, Weiss B, Roeth R, Clauss S, Klier I, Kääb S, Schulz A, Wild PS, Ghrib A, Zeller T, Schnabel RB, Just S, Rappold GA. Functional Characterization of Rare Variants in the SHOX2 Gene Identified in Sinus Node Dysfunction and Atrial Fibrillation. Front Genet 2019; 10:648. [PMID: 31354791 PMCID: PMC6637028 DOI: 10.3389/fgene.2019.00648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Sinus node dysfunction (SND) and atrial fibrillation (AF) often coexist; however, the molecular mechanisms linking both conditions remain elusive. Mutations in the homeobox-containing SHOX2 gene have been recently associated with early-onset and familial AF. Shox2 is a key regulator of sinus node development, and its deficiency leads to bradycardia, as demonstrated in animal models. To provide an extended SHOX2 gene analysis in patients with distinct arrhythmias, we investigated SHOX2 as a susceptibility gene for SND and AF by screening 98 SND patients and 450 individuals with AF. The functional relevance of the novel mutations was investigated in vivo and in vitro, together with the previously reported p.H283Q variant. A heterozygous missense mutation (p.P33R) was identified in the SND cohort and four heterozygous variants (p.G77D, p.L129=, p.L130F, p.A293=) in the AF cohort. Overexpression of the pathogenic predicted mutations in zebrafish revealed pericardial edema for p.G77D and the positive control p.H283Q, whereas the p.P33R and p.A293= variants showed no effect. In addition, a dominant-negative effect with reduced heart rates was detected for p.G77D and p.H283Q. In vitro reporter assays demonstrated for both missense variants p.P33R and p.G77D significantly impaired transactivation activity, similar to the described p.H283Q variant. Also, a reduced Bmp4 target gene expression was revealed in zebrafish hearts upon overexpression of the p.P33R mutant. This study associates additional rare variants in the SHOX2 gene implicated in the susceptibility to distinct arrhythmias and allows frequency estimations in the AF cohort (3/990). We also demonstrate for the first time a genetic link between SND and AF involving SHOX2. Moreover, our data highlight the importance of functional investigations of rare variants.
Collapse
Affiliation(s)
- Sandra Hoffmann
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christoph Paone
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Simon A Sumer
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Sabrina Diebold
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Birgit Weiss
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Ralph Roeth
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Clauss
- Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich, Munich, Germany
| | - Ina Klier
- Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich, Munich, Germany
| | - Stefan Kääb
- Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich, Munich, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Adil Ghrib
- Department of General and Interventional Cardiology, University Heart Center Hamburg (UHZ), University Hospital Hamburg/Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Center Hamburg (UHZ), University Hospital Hamburg/Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Renate B Schnabel
- Department of General and Interventional Cardiology, University Heart Center Hamburg (UHZ), University Hospital Hamburg/Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Steffen Just
- Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
8
|
Schweizer PA, Darche FF, Ullrich ND, Geschwill P, Greber B, Rivinius R, Seyler C, Müller-Decker K, Draguhn A, Utikal J, Koenen M, Katus HA, Thomas D. Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells. Stem Cell Res Ther 2017; 8:229. [PMID: 29037217 PMCID: PMC5644063 DOI: 10.1186/s13287-017-0681-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. Methods hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. Results hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10–12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70–90 beats/min) and were triggered by spontaneous Ca2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. Conclusion We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0681-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.
| | - Fabrice F Darche
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Nina D Ullrich
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Pascal Geschwill
- Institute of Physiology and Pathophysiology, Division of Neuro- and Sensory Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Boris Greber
- Department of Cell and Developmental Biology, Max-Planck-Institute for Molecular Biomedicine, Röntgenstrasse, 20, D-48149, Münster, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Claudia Seyler
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Karin Müller-Decker
- Unit Tumor Models, German Cancer Research Center (DKFZ), Heidelberg, INF 280, D-69120, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Division of Neuro- and Sensory Physiology, Heidelberg University, INF 326, D-69120, Heidelberg, Germany
| | - Jochen Utikal
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Dermato-Oncology (G300), German Cancer Research Center (DKFZ), Heidelberg, INF 280, D-69120, Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68167, Mannheim, Germany
| | - Michael Koenen
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| |
Collapse
|