1
|
Lee J, Chen LF, Gaudin S, Gupta K, Spakowitz A, Boettiger AN. Kinetic organization of the genome revealed by ultra-resolution, multiscale live imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645817. [PMID: 40236138 PMCID: PMC11996339 DOI: 10.1101/2025.03.27.645817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In the last decade, sequencing methods like Hi-C have made it clear the genome is intricately folded, and that this organization contributes significantly to the control of gene expression and thence cell fate and behavior. Single-cell DNA tracing microscopy and polymer physics-based simulations of genome folding have proposed these population-scale patterns arise from motor- driven, heterogeneous movement, rather than stable 3D genomic architecture, implying that motion, rather than structure, is key to understanding genome function. However, tools to directly observe this motion in vivo have been limited in coverage and resolution. Here we describe TRansposon Assisted Chromatin Kinetic Imaging Technology (TRACK-IT), which combines a suite of imaging and labeling improvements to achieve ultra-resolution in space and time, with self-mapping transposons to distribute labels across the chromosome, uncovering dynamic behaviors across four orders of magnitude of genomic separation. We find that sequences separated by sub-megabase distances, typically 200-500 nm of nanometers apart, can transition to close proximity in tens of seconds - faster than previously hypothesized. This rapid motion is dependent upon cohesin and is exhibited only within certain genomic domains. Domain borders act as kinetic impediments to this search process, substantially slowing the rate and frequency of the transition to proximity. The genomic separation-dependent scaling of the search time for cis-interactions within a domain violates predictions of diffusion, suggesting motor driven folding. This distinctive scaling is lost following cohesin depletion, replaced with a behavior consistent with diffusion. Finally, we found cohesin containing cells exhibited rare, processive movements, not seen in cohesin depleted cells. These processive trajectories exhibit extrusion rates of ∼2.7 kb/s across three distinct genomic intervals, faster than recent in vitro measurements and prior estimates from in vivo data. Taken together, these results reveal a genome in motion across multiple genomic and temporal scales, where motor-dependent extrusion divides the sequence, not into spatially separate domains, but into kinetically separated domains that experience accelerated local search.
Collapse
|
2
|
Harteveld CL, Achour A, Fairuz Mohd Hasan NF, Legebeke J, Arkesteijn SJG, ter Huurne J, Verschuren M, Bhagwandien-Bisoen S, Schaap R, Vijfhuizen L, el Idrissi H, Babbs C, Higgs DR, Koopmann TT, Vrettou C, Traeger-Synodinos J, Baas F. Loss-of-Function Variants in SUPT5H as Modifying Factors in Beta-Thalassemia. Int J Mol Sci 2024; 25:8928. [PMID: 39201615 PMCID: PMC11354595 DOI: 10.3390/ijms25168928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
It is well known that modifiers play a role in ameliorating or exacerbating disease phenotypes in patients and carriers of recessively inherited disorders such as sickle cell disease and thalassemia. Here, we give an overview of the literature concerning a recently described association in carriers of SUPT5H Loss-of-Function variants with a beta-thalassemia-like phenotype including the characteristic elevated levels of HbA2. That SUPT5H acts as modifier in beta-thalassemia carriers became evident from three reported cases in whom combined heterozygosity of SUPT5H and HBB gene variants was observed to resemble a mild beta-thalassemia intermedia phenotype. The different SUPT5H variants and hematologic parameters reported are collected and reviewed to provide insight into the possible effects on hematologic expression, as well as potential disease mechanisms in carriers and patients.
Collapse
Affiliation(s)
- Cornelis L. Harteveld
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Ahlem Achour
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis 3000, Tunisia
| | - Nik Fatma Fairuz Mohd Hasan
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
- Department of Pathology, Hospital Raja Perempuan Zainab II, Kota Bharu 15400, Malaysia
| | - Jelmer Legebeke
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Sandra J. G. Arkesteijn
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Jeanet ter Huurne
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Maaike Verschuren
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Sharda Bhagwandien-Bisoen
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Rianne Schaap
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Linda Vijfhuizen
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Hakima el Idrissi
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Christian Babbs
- Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Douglas R. Higgs
- Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Tamara T. Koopmann
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| | - Christina Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 115 27 Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 115 27 Athens, Greece
| | - Frank Baas
- Department of Clinical Genetics/LDGA, Leiden University Medical Center, P.O. Box 9600, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
3
|
Martell DJ, Merens HE, Caulier A, Fiorini C, Ulirsch JC, Ietswaart R, Choquet K, Graziadei G, Brancaleoni V, Cappellini MD, Scott C, Roberts N, Proven M, Roy NBA, Babbs C, Higgs DR, Sankaran VG, Churchman LS. RNA polymerase II pausing temporally coordinates cell cycle progression and erythroid differentiation. Dev Cell 2023; 58:2112-2127.e4. [PMID: 37586368 PMCID: PMC10615711 DOI: 10.1016/j.devcel.2023.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Controlled release of promoter-proximal paused RNA polymerase II (RNA Pol II) is crucial for gene regulation. However, studying RNA Pol II pausing is challenging, as pause-release factors are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H, which encodes SPT5, in individuals with β-thalassemia. During erythropoiesis in healthy human cells, cell cycle genes were highly paused as cells transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, RNA Pol II pause release was globally disrupted, and as cells began transitioning from progenitors to precursors, differentiation was delayed, accompanied by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, identifying a role for RNA Pol II pausing in temporally coordinating the cell cycle and erythroid differentiation.
Collapse
Affiliation(s)
- Danya J Martell
- Department of Genetics, Harvard University, Boston, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hope E Merens
- Department of Genetics, Harvard University, Boston, MA, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Karine Choquet
- Department of Genetics, Harvard University, Boston, MA, USA
| | - Giovanna Graziadei
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Valentina Brancaleoni
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Melanie Proven
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Noémi B A Roy
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre and BRC/NHS Translational Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | |
Collapse
|
4
|
Mark KG, Kolla S, Aguirre JD, Garshott DM, Schmitt S, Haakonsen DL, Xu C, Kater L, Kempf G, Martínez-González B, Akopian D, See SK, Thomä NH, Rapé M. Orphan quality control shapes network dynamics and gene expression. Cell 2023; 186:3460-3475.e23. [PMID: 37478862 DOI: 10.1016/j.cell.2023.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
All eukaryotes require intricate protein networks to translate developmental signals into accurate cell fate decisions. Mutations that disturb interactions between network components often result in disease, but how the composition and dynamics of complex networks are established remains poorly understood. Here, we identify the E3 ligase UBR5 as a signaling hub that helps degrade unpaired subunits of multiple transcriptional regulators that act within a network centered on the c-Myc oncoprotein. Biochemical and structural analyses show that UBR5 binds motifs that only become available upon complex dissociation. By rapidly turning over unpaired transcription factor subunits, UBR5 establishes dynamic interactions between transcriptional regulators that allow cells to effectively execute gene expression while remaining receptive to environmental signals. We conclude that orphan quality control plays an essential role in establishing dynamic protein networks, which may explain the conserved need for protein degradation during transcription and offers opportunities to modulate gene expression in disease.
Collapse
Affiliation(s)
- Kevin G Mark
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - SriDurgaDevi Kolla
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jacob D Aguirre
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Danielle M Garshott
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Stefan Schmitt
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Diane L Haakonsen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christina Xu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Lukas Kater
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - David Akopian
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Stephanie K See
- Center for Emerging and Neglected Diseases, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Martell DJ, Merens HE, Fiorini C, Caulier A, Ulirsch JC, Ietswaart R, Choquet K, Graziadei G, Brancaleoni V, Cappellini MD, Scott C, Roberts N, Proven M, Roy NB, Babbs C, Higgs DR, Sankaran VG, Churchman LS. RNA Polymerase II pausing temporally coordinates cell cycle progression and erythroid differentiation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.03.23286760. [PMID: 36945604 PMCID: PMC10029049 DOI: 10.1101/2023.03.03.23286760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The controlled release of promoter-proximal paused RNA polymerase II (Pol II) into productive elongation is a major step in gene regulation. However, functional analysis of Pol II pausing is difficult because factors that regulate pause release are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H , which encodes SPT5, in individuals with β-thalassemia unlinked to HBB mutations. During erythropoiesis in healthy human cells, cell cycle genes were highly paused at the transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, Pol II pause release was globally disrupted, and the transition from progenitors to precursors was delayed, marked by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, revealing a role for Pol II pausing in the temporal coordination between the cell cycle and differentiation.
Collapse
Affiliation(s)
- Danya J Martell
- Harvard University, Department of Genetics, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Hope E Merens
- Harvard University, Department of Genetics, Boston, MA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | | | - Giovanna Graziadei
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Valentina Brancaleoni
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nigel Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Melanie Proven
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Noémi Ba Roy
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and BRC/NHS Translational Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | |
Collapse
|
6
|
Abe K, Schauer T, Torres-Padilla ME. Distinct patterns of RNA polymerase II and transcriptional elongation characterize mammalian genome activation. Cell Rep 2022; 41:111865. [PMID: 36577375 DOI: 10.1016/j.celrep.2022.111865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 12/28/2022] Open
Abstract
How transcription is regulated as development commences is fundamental to understand how the transcriptionally silent mature gametes are reprogrammed. The embryonic genome is activated for the first time during zygotic genome activation (ZGA). How RNA polymerase II (Pol II) and productive elongation are regulated during this process remains elusive. Here, we generate genome-wide maps of Serine 5 and Serine 2-phosphorylated Pol II during and after ZGA in mouse embryos. We find that both phosphorylated Pol II forms display similar distributions across genes during ZGA, with typical elongation enrichment of Pol II emerging after ZGA. Serine 2-phosphorylated Pol II occurs at genes prior to their activation, suggesting that Serine 2 phosphorylation may prime gene expression. Functional perturbations demonstrate that CDK9 and SPT5 are major ZGA regulators and that SPT5 prevents precocious activation of some genes. Overall, our work sheds molecular insights into transcriptional regulation at the beginning of mammalian development.
Collapse
Affiliation(s)
- Kenichiro Abe
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany; Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 München, Germany; Faculty of Biology, Ludwig-Maximilians Universität, München, Germany.
| |
Collapse
|
7
|
van Schaik T, Liu NQ, Manzo SG, Peric-Hupkes D, de Wit E, van Steensel B. CTCF and cohesin promote focal detachment of DNA from the nuclear lamina. Genome Biol 2022; 23:185. [PMID: 36050765 PMCID: PMC9438259 DOI: 10.1186/s13059-022-02754-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/22/2022] [Indexed: 01/23/2023] Open
Abstract
Background Lamina-associated domains (LADs) are large genomic regions that are positioned at the nuclear lamina. It has remained largely unclear what drives the positioning and demarcation of LADs. Because the insulator protein CTCF is enriched at LAD borders, it was postulated that CTCF binding could position some LAD boundaries, possibly through its function in stalling cohesin and hence preventing cohesin invading into the LAD. To test this, we mapped genome–nuclear lamina interactions in mouse embryonic stem cells after rapid depletion of CTCF and other perturbations of cohesin dynamics. Results CTCF and cohesin contribute to a sharp transition in lamina interactions at LAD borders, while LADs are maintained after depletion of these proteins, also at borders marked by CTCF. CTCF and cohesin may thus reinforce LAD borders, but do not position these. CTCF binding sites within LADs are locally detached from the lamina and enriched for accessible DNA and active histone modifications. Remarkably, despite lamina positioning being strongly correlated with genome inactivity, this DNA remains accessible after the local detachment is lost following CTCF depletion. At a chromosomal scale, cohesin depletion and cohesin stabilization by depletion of the unloading factor WAPL quantitatively affect lamina interactions, indicative of perturbed chromosomal positioning in the nucleus. Finally, while H3K27me3 is locally enriched at CTCF-marked LAD borders, we find no evidence for an interplay between CTCF and H3K27me3 on lamina interactions. Conclusions These findings illustrate that CTCF and cohesin are not primary determinants of LAD patterns. Rather, these proteins locally modulate NL interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02754-3.
Collapse
Affiliation(s)
- Tom van Schaik
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ning Qing Liu
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefano G Manzo
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daan Peric-Hupkes
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Present address: Annogen, Amsterdam, the Netherlands
| | - Elzo de Wit
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Oncode Institute and Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Abuhashem A, Garg V, Hadjantonakis AK. RNA polymerase II pausing in development: orchestrating transcription. Open Biol 2022; 12:210220. [PMID: 34982944 PMCID: PMC8727152 DOI: 10.1098/rsob.210220] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
The coordinated regulation of transcriptional networks underpins cellular identity and developmental progression. RNA polymerase II promoter-proximal pausing (Pol II pausing) is a prevalent mechanism by which cells can control and synchronize transcription. Pol II pausing regulates the productive elongation step of transcription at key genes downstream of a variety of signalling pathways, such as FGF and Nodal. Recent advances in our understanding of the Pol II pausing machinery and its role in transcription call for an assessment of these findings within the context of development. In this review, we discuss our current understanding of the molecular basis of Pol II pausing and its function during organismal development. By critically assessing the tools used to study this process we conclude that combining recently developed genomics approaches with refined perturbation systems has the potential to expand our understanding of Pol II pausing mechanistically and functionally in the context of development and beyond.
Collapse
Affiliation(s)
- Abderhman Abuhashem
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medical College, New York, NY 10021, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medical College, New York, NY 10021, USA
| |
Collapse
|
9
|
Guo SM, Mei NH, Yang J, Zhou LQ. Transcription factor OTX2 silences the expression of cleavage embryo genes and transposable elements. J Reprod Dev 2021; 67:223-228. [PMID: 33896883 PMCID: PMC8238675 DOI: 10.1262/jrd.2021-007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/28/2021] [Indexed: 11/20/2022] Open
Abstract
Upon mammalian fertilization, zygotic genome activation (ZGA) and activation of transposable elements (TEs) occur in early embryos to establish totipotency and support embryogenesis. However, the molecular mechanisms controlling the expression of these genes in mammals remain poorly understood. The 2-cell-like population of mouse embryonic stem cells (mESCs) mimics cleavage-stage embryos with transient Dux activation. In this study, we demonstrated that deficiency of the transcription factor OTX2 stimulates the expression of ZGA genes in mESCs. Further analysis revealed that OTX2 is incorporated at the Dux locus with corepressors for transcriptional inhibition. We also found that OTX2 associates with TEs and silences the subtypes of TEs. Therefore, OTX2 protein plays an important role in ZGA and TE expression in mESCs to orchestrate the transcriptional network.
Collapse
Affiliation(s)
- Shi-Meng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Ning-Hua Mei
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| |
Collapse
|
10
|
Wulfridge P, Sarma K. A nuclease- and bisulfite-based strategy captures strand-specific R-loops genome-wide. eLife 2021; 10:65146. [PMID: 33620319 PMCID: PMC7901872 DOI: 10.7554/elife.65146] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/16/2021] [Indexed: 01/28/2023] Open
Abstract
R-loops are three-stranded nucleic acid structures with essential roles in many nuclear processes. However, their unchecked accumulation is associated with genome instability and is observed in neurodevelopmental diseases and cancers. Genome-wide profiling of R-loops in normal and diseased cells can help identify locations of pathogenic R-loops and advance efforts to attenuate them. We present an antibody-independent R-loop detection strategy, BisMapR, that combines nuclease-based R-loop isolation with non-denaturing bisulfite chemistry to produce genome-wide profiles that retain strand information. BisMapR achieves greater resolution and is faster than existing strand-specific R-loop profiling strategies. In mouse embryonic stem cells, we apply BisMapR to find that gene promoters form R-loops in both directions and uncover a subset of active enhancers that, despite being bidirectionally transcribed, form R-loops exclusively on one strand. BisMapR reveals a previously unnoticed feature of active enhancers and provides a tool to systematically examine their mechanisms in gene expression.
Collapse
Affiliation(s)
- Phillip Wulfridge
- Gene Expression and Regulation program, The Wistar Institute, Philadelphia, United States.,Epigenetics Institute, University of Pennsylvania, Philadelphia, United States
| | - Kavitha Sarma
- Gene Expression and Regulation program, The Wistar Institute, Philadelphia, United States.,Epigenetics Institute, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
11
|
CTCF-binding element regulates ESC differentiation via orchestrating long-range chromatin interaction between enhancers and HoxA. J Biol Chem 2021; 296:100413. [PMID: 33581110 PMCID: PMC7960549 DOI: 10.1016/j.jbc.2021.100413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Proper expression of Homeobox A cluster genes (HoxA) is essential for embryonic stem cell (ESC) differentiation and individual development. However, mechanisms controlling precise spatiotemporal expression of HoxA during early ESC differentiation remain poorly understood. Herein, we identified a functional CTCF-binding element (CBE+47) closest to the 3'-end of HoxA within the same topologically associated domain (TAD) in ESC. CRISPR-Cas9-mediated deletion of CBE+47 significantly upregulated HoxA expression and enhanced early ESC differentiation induced by retinoic acid (RA) relative to wild-type cells. Mechanistic analysis by chromosome conformation capture assay (Capture-C) revealed that CBE+47 deletion decreased interactions between adjacent enhancers, enabling formation of a relatively loose enhancer-enhancer interaction complex (EEIC), which overall increased interactions between that EEIC and central regions of HoxA chromatin. These findings indicate that CBE+47 organizes chromatin interactions between its adjacent enhancers and HoxA. Furthermore, deletion of those adjacent enhancers synergistically inhibited HoxA activation, suggesting that these enhancers serve as an EEIC required for RA-induced HoxA activation. Collectively, these results provide new insight into RA-induced HoxA expression during early ESC differentiation, also highlight precise regulatory roles of the CTCF-binding element in orchestrating high-order chromatin structure.
Collapse
|
12
|
Jurynec MJ, Bai X, Bisgrove BW, Jackson H, Nechiporuk A, Palu RAS, Grunwald HA, Su YC, Hoshijima K, Yost HJ, Zon LI, Grunwald DJ. The Paf1 complex and P-TEFb have reciprocal and antagonist roles in maintaining multipotent neural crest progenitors. Development 2019; 146:dev.180133. [PMID: 31784460 DOI: 10.1242/dev.180133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Multipotent progenitor populations are necessary for generating diverse tissue types during embryogenesis. We show the RNA polymerase-associated factor 1 complex (Paf1C) is required to maintain multipotent progenitors of the neural crest (NC) lineage in zebrafish. Mutations affecting each Paf1C component result in near-identical NC phenotypes; alyron mutant embryos carrying a null mutation in paf1 were analyzed in detail. In the absence of zygotic paf1 function, definitive premigratory NC progenitors arise but fail to maintain expression of the sox10 specification gene. The mutant NC progenitors migrate aberrantly and fail to differentiate appropriately. Blood and germ cell progenitor development is affected similarly. Development of mutant NC could be rescued by additional loss of positive transcription elongation factor b (P-TEFb) activity, a key factor in promoting transcription elongation. Consistent with the interpretation that inhibiting/delaying expression of some genes is essential for maintaining progenitors, mutant embryos lacking the CDK9 kinase component of P-TEFb exhibit a surfeit of NC progenitors and their derivatives. We propose Paf1C and P-TEFb act antagonistically to regulate the timing of the expression of genes needed for NC development.
Collapse
Affiliation(s)
- Michael J Jurynec
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xiaoying Bai
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brent W Bisgrove
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Haley Jackson
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Alex Nechiporuk
- Department of Cell and Developmental Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rebecca A S Palu
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hannah A Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi-Chu Su
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
13
|
RNA structure maps across mammalian cellular compartments. Nat Struct Mol Biol 2019; 26:322-330. [PMID: 30886404 PMCID: PMC6640855 DOI: 10.1038/s41594-019-0200-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/07/2019] [Indexed: 11/15/2022]
Abstract
RNA structure is intimately connected to each step of gene expression. Recent advances have enabled transcriptome-wide maps of RNA secondary structure, termed RNA structuromes. However, previous whole-cell analyses lacked the resolution to unravel the landscape and also the regulatory mechanisms of RNA structural changes across subcellular compartments. Here we reveal the RNA structuromes in three compartments — chromatin, nucleoplasm and cytoplasm in human and mouse cells. The cytotopic structuromes substantially expand RNA structural information, and enable detailed investigation of the central role of RNA structure in linking transcription, translation, and RNA decay. We develop a resource to visualize the interplay of RNA-protein interactions, RNA modifications, and RNA structure, and predict both direct and indirect reader proteins of RNA modifications. We also validate a novel role of the RNA binding protein LIN28A as an N6-methyladenosine modification “anti-reader”. Our results highlight the dynamic nature of RNA structures and its functional significance in gene regulation.
Collapse
|
14
|
NETSeq reveals heterogeneous nucleotide incorporation by RNA polymerase I. Proc Natl Acad Sci U S A 2018; 115:E11633-E11641. [PMID: 30482860 PMCID: PMC6294894 DOI: 10.1073/pnas.1809421115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequence motifs that affect RNA polymerase transcription elongation are well studied in prokaryotic organisms and contribute directly to regulation of gene expression. Despite significant work on the regulation of eukaryotic transcription, the effect of DNA template sequence on RNA polymerase I (Pol I) transcription elongation remains unknown. In this study, we examined the effects of DNA sequence motifs on Pol I transcription elongation kinetics in vitro and in vivo. Specifically, we characterized how the spy rho-independent terminator motif from Escherichia coli directly affects Saccharomyces cerevisiae Pol I activity, demonstrating evolutionary conservation of sequence-specific effects on transcription. The insight gained from this analysis led to the identification of a homologous sequence in the ribosomal DNA of S. cerevisiae We then used native elongating transcript sequencing (NETSeq) to determine whether Pol I encounters pause-inducing sequences in vivo. We found hundreds of positions within the ribosomal DNA (rDNA) that reproducibly induce pausing in vivo. We also observed significantly lower Pol I occupancy at G residues in the rDNA, independent of other sequence context, indicating differential nucleotide incorporation rates for Pol I in vivo. These data demonstrate that DNA template sequence elements directly influence Pol I transcription elongation. Furthermore, we have developed the necessary experimental and analytical methods to investigate these perturbations in living cells going forward.
Collapse
|