1
|
Ilieva M, Aldana BI, Vinten KT, Hohmann S, Woofenden TW, Lukjanska R, Waagepetersen HS, Michel TM. Proteomic phenotype of cerebral organoids derived from autism spectrum disorder patients reveal disrupted energy metabolism, cellular components, and biological processes. Mol Psychiatry 2022; 27:3749-3759. [PMID: 35618886 DOI: 10.1038/s41380-022-01627-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
The way in which brain morphology and proteome are remodeled during embryonal development, and how they are linked to the cellular metabolism, could be a key for elucidating the pathological mechanisms of certain neurodevelopmental disorders. Cerebral organoids derived from autism spectrum disorder (ASD) patients were generated to capture critical time-points in the neuronal development, and metabolism and protein expression were investigated. The early stages of development, when neurogenesis commences (day in vitro 39), appeared to be a critical timepoint in pathogenesis. In the first month of development, increased size in ASD-derived organoids were detected in comparison to the controls. The size of the organoids correlates with the number of proliferating cells (Ki-67 positive cells). A significant difference in energy metabolism and proteome phenotype was also observed in ASD organoids at this time point, specifically, prevalence of glycolysis over oxidative phosphorylation, decreased ATP production and mitochondrial respiratory chain activity, differently expressed cell adhesion proteins, cell cycle (spindle formation), cytoskeleton, and several transcription factors. Finally, ASD patients and controls derived organoids were clustered based on a differential expression of ten proteins-heat shock protein 27 (hsp27) phospho Ser 15, Pyk (FAK2), Elk-1, Rac1/cdc42, S6 ribosomal protein phospho Ser 240/Ser 244, Ha-ras, mTOR (FRAP) phospho Ser 2448, PKCα, FoxO3a, Src family phospho Tyr 416-at day 39 which could be defined as potential biomarkers and further investigated for potential drug development.
Collapse
Affiliation(s)
- Mirolyuba Ilieva
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark. .,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark. .,Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark.
| | - Blanca Irene Aldana
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Tore Vinten
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonja Hohmann
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Thomas William Woofenden
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Renate Lukjanska
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Helle S Waagepetersen
- Neurometabolism Research Group, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tanja Maria Michel
- Department of Psychiatry, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Psychiatry in the Region of Southern Denmark, Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
DNA Methylation Profiles of GAD1 in Human Cerebral Organoids of Autism Indicate Disrupted Epigenetic Regulation during Early Development. Int J Mol Sci 2022; 23:ijms23169188. [PMID: 36012452 PMCID: PMC9408997 DOI: 10.3390/ijms23169188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
DNA methylation profiling has become a promising approach towards identifying biomarkers of neuropsychiatric disorders including autism spectrum disorder (ASD). Epigenetic markers capture genetic risk factors and diverse exogenous and endogenous factors, including environmental risk factors and complex disease pathologies. We analysed the differential methylation profile of a regulatory region of the GAD1 gene using cerebral organoids generated from induced pluripotent stem cells (iPSCs) from adults with a diagnosis of ASD and from age- and gender-matched healthy individuals. Both groups showed high levels of methylation across the majority of CpG sites within the profiled GAD1 region of interest. The ASD group exhibited a higher number of unique DNA methylation patterns compared to controls and an increased CpG-wise variance. We detected six differentially methylated CpG sites in ASD, three of which reside within a methylation-dependent transcription factor binding site. In ASD, GAD1 is subject to differential methylation patterns that may not only influence its expression, but may also indicate variable epigenetic regulation among cells.
Collapse
|
3
|
Ejlersen M, Ilieva M, Michel TM. Superoxide dismutase isozymes in cerebral organoids from autism spectrum disorder patients. J Neural Transm (Vienna) 2022; 129:617-626. [PMID: 35266053 DOI: 10.1007/s00702-022-02472-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder is a pervasive neurodevelopmental disorder with a substantial contribution to the global disease burden. Despite intensive research efforts, the aetiopathogenesis remains unclear. The Janus-faced antioxidant enzymes superoxide dismutase 1-3 have been implicated in initiating oxidative stress and as such may constitute a potential therapeutic target. However, no measurement has been taken in human autistic brain samples. The aim of this study is to measure superoxide dismutase 1-3 in autistic cerebral organoids as an in vitro model of human foetal neurodevelopment. Whole brain organoids were created from induced pluripotent stem cells from healthy individuals (n = 5) and individuals suffering from autism (n = 4). Using Pierce bicinchoninic acid and enzyme-linked immunosorbent assays, the protein and superoxide dismutase 1, 2, and 3 concentrations were quantified in the cerebral organoids at days 22, 32, and 42. Measurements were normalized to the protein concentration. Results represented using medians and interquartile ranges. Using Wilcoxon matched-pairs signed-rank test, an abrupt rise in the superoxide dismutase concentration was observed at day 32 and onwards. Using Wilcoxon rank-sum test, no differences were observed between healthy (SOD1: 35.56 ng/mL ± 3.46; SOD2: 2435.80 ng/mL ± 1327.00; SOD3: 1854.88 ng/mL ± 867.94) and autistic (SOD1: 32.85 ng/mL ± 5.26; SOD2: 2717.80 ng/mL ± 1889.10; SOD3: 1690.18 ng/mL ± 615.49) organoids. Cerebral organoids recapitulate many aspects of human neurodevelopment, but the diffusion restriction may render efforts in modelling differences in oxidative stress futile due to the intrinsic hypoxia and central necrosis.
Collapse
Affiliation(s)
- Morten Ejlersen
- Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000, Odense, Denmark
| | - Mirolyuba Ilieva
- Research Unit of the Department of Psychiatry, University Hospital of Southern Denmark, J.B. Winsløws Vej 20, 5000, Odense, Denmark
| | - Tanja Maria Michel
- Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000, Odense, Denmark.
- Research Unit of the Department of Psychiatry, University Hospital of Southern Denmark, J.B. Winsløws Vej 20, 5000, Odense, Denmark.
| |
Collapse
|
4
|
Edelson SM. Evidence from Characteristics and Comorbidities Suggesting That Asperger Syndrome Is a Subtype of Autism Spectrum Disorder. Genes (Basel) 2022; 13:274. [PMID: 35205319 PMCID: PMC8871744 DOI: 10.3390/genes13020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
The current version of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders (DSM-V) does not consider Asperger syndrome a diagnostic category. This study was undertaken to see if there is evidence that this diagnosis should be reinstated. An online survey was conducted to examine symptoms and behaviors associated with the current diagnostic criteria of autism spectrum disorders (ASD) (DSM-V), and those associated with Asperger syndrome based on the previous version (DSM-IV-TR). The study also examined other characteristics historically associated with autism, as well as impairments often reported in infancy/young childhood and medical comorbidities frequently associated with autism. The sample included 251 individuals who had received a diagnosis of Asperger syndrome and 1888 who were diagnosed with autism or ASD. Numerous similarities and differences were found between the two groups. The findings are discussed in relation to reestablishing Asperger syndrome as a valid diagnostic category as well as a subtype of ASD.
Collapse
|