1
|
Park JH, Oh SY, Jung SC, Song TJ, Jo I. Far-infrared irradiation increases the uptake of LDL cholesterol by downregulating PCSK9 through the activation of TRPV4 calcium channels in HepG2 cells. Biochem Biophys Res Commun 2024; 723:150187. [PMID: 38850809 DOI: 10.1016/j.bbrc.2024.150187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
This study investigated the effects of far-infrared (FIR) irradiation on low-density lipoprotein cholesterol (LDL-C) uptake by human hepatocellular carcinoma G2 (HepG2) cells via the regulation of proprotein convertase subtilisin/kexin type 9 (PCSK9). FIR irradiation for 30 min significantly decreased PCSK9 expression (p < 0.01) in HepG2 cells. FIR irradiation substantially increased the low-density lipoprotein receptor (p < 0.0001) and LDL-C uptake (p < 0.01). Activation of transient receptor potential vanilloid (TRPV) channels mimicked the effects of FIR irradiation, significantly decreasing the protein expression of PCSK9 (p < 0.05). Conversely, inhibition of TRP channels using ruthenium red reversed the reduction in PCSK9 protein expression following FIR irradiation (p < 0.01). The specific activation of TRPV4 using 4α-PDD mimicked the effect of FIR irradiation (p < 0.01), whereas PCSK9 reduction by FIR irradiation was significantly reversed by the inhibition of TRPV4 using RN1734 (p < 0.05). These findings implied that FIR irradiation emitted from a ceramic lamp specifically increased TRPV4 activity. These findings provide insights into a novel therapeutic approach using FIR irradiation for LDL-C regulation and its implications for cardiovascular health.
Collapse
Affiliation(s)
- Jin-Hee Park
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Se-Young Oh
- Department of Convergence Medicine & Ewha Research Institute for Regenerative Medicine (ERIRM), Ewha Womans University Mokdong Hospital, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Sung-Chul Jung
- Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea; Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Seoul, 07804, Republic of Korea
| | - Tae-Jin Song
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, 260, Airport-daero, Gangseo-gu, Seoul, 07804, Republic of Korea.
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
2
|
Qin B, Fu SJ, Xu XF, Yang JJ, Wang Y, Wang LN, Huang BX, Zhong J, Wu WY, Lu HA, Law BYK, Wang N, Wong IN, Wong VKW. Far-infrared radiation and its therapeutic parameters: A superior alternative for future regenerative medicine? Pharmacol Res 2024; 208:107349. [PMID: 39151679 DOI: 10.1016/j.phrs.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
In future regenerative medicine, far-infrared radiation (FIR) may be an essential component of optical therapy. Many studies have confirmed or validated the efficacy and safety of FIR in various diseases, benefiting from new insights into FIR mechanisms and the excellent performance of many applications. However, the lack of consensus on the biological effects and therapeutic parameters of FIR limits its practical applications in the clinic. In this review, the definition, characteristics, and underlying principles of the FIR are systematically illustrated. We outline the therapeutic parameters of FIR, including the wavelength range, power density, irradiation time, and distance. In addition, the biological effects, potential molecular mechanisms, and preclinical and clinical applications of FIR are discussed. Furthermore, the future development and applications of FIR are described in this review. By applying optimal therapeutic parameters, FIR can influence various cells, animal models, and patients, eliciting diverse underlying mechanisms and offering therapeutic potential for many diseases. FIR could represent a superior alternative with broad prospects for application in future regenerative medicine.
Collapse
Affiliation(s)
- Bo Qin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Shi-Jie Fu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Xiong-Fei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Jiu-Jie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Breast, Thyroid and Vascular Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Lin-Na Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Bai-Xiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Jing Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Wan-Yu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Heng-Ao Lu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Nick Wang
- New Age Technology (Asia) Limited, TML Tower, 3 Hoi Shing Road, Tsuen Wan, Hong Kong
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macao.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao.
| |
Collapse
|
3
|
Takagi R, Takegaki J, Osana S, Kano Y, Konishi S, Fujita S. Cooling-promoted myogenic differentiation of murine bone marrow mesenchymal stem cells through TRPM8 activation in vitro. Physiol Rep 2023; 11:e15855. [PMID: 38086691 PMCID: PMC10716030 DOI: 10.14814/phy2.15855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 12/17/2023] Open
Abstract
TRPM8 agonist has been reported to promote osteogenic differentiation of mesenchymal stem cells (MSCs), therefore we evaluated whether cooling-induced activation of TRPM8 promotes myogenic differentiation of MSCs. We used 5-azacytidine as a myogenic differentiation inducer in murine bone marrow-derived MSCs. Addition of menthol, a TRPM8 agonist, to the differentiation induction medium significantly, increased the percentage of MyoD-positive cells, a specific marker of myogenic differentiation. We performed intracellular Ca2+ imaging experiments using fura-2 to confirm TRPM8 activation by cooling stimulation. The results confirmed that intracellular Ca2+ concentration ([Ca2+ ]i) increases due to TRPM8 activation, and TRPM8 antagonist inhibits increase in [Ca2+ ]i at medium temperatures below 19°C. We also examined the effect of cooling exposure time on myogenic differentiation of MSCs using an external cooling stimulus set at 17°C. The results showed that 60 min of cooling had an acceleratory effect on differentiation (2.18 ± 0.27 times). We observed that the TRPM8 antagonist counteracted the differentiation-promoting effect of the cooling. These results suggest that TRPM8 might modulate the multiple differentiation pathways of MSCs, and that cooling is an effective way of activating TRPM8, which regulates MSCs differentiation in vitro.
Collapse
Affiliation(s)
- Ryo Takagi
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Junya Takegaki
- Research Organization of Science and TechnologyRitsumeikan UniversityShigaJapan
| | - Shion Osana
- Graduate School of Informatics and EngineeringUniversity of Electro‐CommunicationsTokyoJapan
- Faculty of Physical Education, Department of Sport and Medical ScienceKokushikan UniversityTokyoJapan
| | - Yutaka Kano
- Graduate School of Informatics and EngineeringUniversity of Electro‐CommunicationsTokyoJapan
- Center for Neuroscience and Biomedical EngineeringUniversity of Electro‐CommunicationsTokyoJapan
| | - Satoshi Konishi
- Faculty of Science and EngineeringRitsumeikan UniversityShigaJapan
| | - Satoshi Fujita
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| |
Collapse
|
4
|
Park S, Yu Y, Park GC, Shin SC, Kim JM, Lee BJ, Kim YH. Proliferation-Related Features of the Human Mesenchymal Stem Cells Derived from Palatine Tonsils, Adipose Tissues, and Bone Marrow. Tissue Eng Regen Med 2023; 20:1119-1132. [PMID: 37594634 PMCID: PMC10645842 DOI: 10.1007/s13770-023-00564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are widely used in regenerative medicine and cell-based transplantations. However, an in-depth comparison of the different MSC origins is lacking. This study aimed to compare the expression of adipose-derived (AMSCs), bone marrow-derived (BMSCs), and tonsil-derived (TMSCs) and evaluate whether TMSCs are good alternatives for AMSCs or BMSCs. METHODS We analyzed the expression levels of 47,000 transcripts in AMSCs (n = 4), BMSCs (n = 4), and TMSCs (n = 4) using GeneChip. Microarray data were analyzed using the LIMMA package to compare the TMSCs, AMSCs, and BMSCs. Hub genes were analyzed using STRING and Cytoscape. To ascertain the functional roles of AURKA and AURKB, small interfering RNA (siRNA) molecules specifically targeting AURKA and AURKB mRNA were synthesized and employed to induce knockdown of AURKA and AURKB in TMSC and AMSC. We analyzed the expression level of OCT4, SOX-2, and NANOG genes in TMSC and AMSCs by cell culture and real-time PCR. RESULTS We identified commonly increased 256 and decreased 160 genes in TMSCs from the differentially expressed genes (DEGs) between the TMSCs, AMSCs, and BMSCs. In the DEG-based protein-protein interaction and gene set enrichment analysis, hub genes (AURKA, AURKB, CDC20, and BUB1) highly expressed in TMSCs were enriched for development- and progression-related oocyte meiosis, the cell cycle, and ubiquitin-mediated proteolysis. In vitro analysis demonstrated that cells with downregulated expression of AURKA and AURKB exhibited a significant reduction in proliferation compared to control cells. However, silencing of the genes did not affect the differentiation capacity in TMSCs and AMSCs. CONCLUSION Our study compared MSCs of different origins to better understand the similarities and differences among these cell types.
Collapse
Affiliation(s)
- Sohee Park
- Convergence Medical Sciences, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Yeuni Yu
- Biomedical Research Institute, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Gi Cheol Park
- Department of Otolaryngology-Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University College of Medicine, Changwon, Republic of Korea
| | - Sung-Chan Shin
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-Ro, Busan, 49241, Republic of Korea
| | - Ji Min Kim
- Pusan National University Medical Research Institute, College of Medicine, Pusan National University, Busan, Republic of Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-Ro, Busan, 49241, Republic of Korea.
- Pusan National University Medical Research Institute, College of Medicine, Pusan National University, Busan, Republic of Korea.
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea.
- Department of Anatomy and Department of Biomedical Informatics, School of Medicine, Pusan National University, 49 Busandaehak-Ro, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
5
|
Ko CM, Then CK, Kuo YM, Lin YK, Shen SC. Far-Infrared Ameliorates Pb-Induced Renal Toxicity via Voltage-Gated Calcium Channel-Mediated Calcium Influx. Int J Mol Sci 2023; 24:15828. [PMID: 37958813 PMCID: PMC10649088 DOI: 10.3390/ijms242115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Far-infrared (FIR), characterized by its specific electromagnetic wavelengths, has emerged as an adjunctive therapeutic strategy for various diseases, particularly in ameliorating manifestations associated with renal disorders. Although FIR was confirmed to possess antioxidative and anti-inflammatory attributes, the intricate cellular mechanisms through which FIR mitigates lead (Pb)-induced nephrotoxicity remain enigmatic. In this study, we investigated the effects of FIR on Pb-induced renal damage using in vitro and in vivo approaches. NRK52E rat renal cells exposed to Pb were subsequently treated with ceramic-generated FIR within the 9~14 μm range. Inductively coupled plasma mass spectrometry (ICP-MS) enabled quantitative Pb concentration assessment, while proteomic profiling unraveled intricate cellular responses. In vivo investigations used Wistar rats chronically exposed to lead acetate (PbAc) at 6 g/L in their drinking water for 15 weeks, with or without a concurrent FIR intervention. Our findings showed that FIR upregulated the voltage-gated calcium channel, voltage-dependent L type, alpha 1D subunit (CaV1.3), and myristoylated alanine-rich C kinase substrate (MARCKS) (p < 0.05), resulting in increased calcium influx (p < 0.01), the promotion of mitochondrial activity, and heightened ATP production. Furthermore, the FIR intervention effectively suppressed ROS production, concurrently mitigating Pb-induced cellular death. Notably, rats subjected to FIR exhibited significantly reduced blood Pb levels (30 vs. 71 μg/mL; p < 0.01), attenuated Pb-induced glomerulosclerosis, and enhanced Pb excretion compared to the controls. Our findings suggest that FIR has the capacity to counteract Pb-induced nephrotoxicity by modulating calcium influx and optimizing mitochondrial function. Overall, our data support FIR as a novel therapeutic avenue for Pb toxicity in the kidneys.
Collapse
Affiliation(s)
- Chin-Meng Ko
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
| | - Chee-Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Yu-Ming Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
| | - Yen-Kuang Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-M.K.); (Y.-M.K.)
- Department of Dermatology, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master and Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
New Insights into TRP Ion Channels in Stem Cells. Int J Mol Sci 2022; 23:ijms23147766. [PMID: 35887116 PMCID: PMC9318110 DOI: 10.3390/ijms23147766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Transient receptor potential (TRP) ion channels are cationic permeable proteins located on the plasma membrane. TRPs are cellular sensors for perceiving diverse physical and/or chemical stimuli; thus, serving various critical physiological functions, including chemo-sensation, hearing, homeostasis, mechano-sensation, pain, taste, thermoregulation, vision, and even carcinogenesis. Dysregulated TRPs are found to be linked to many human hereditary diseases. Recent studies indicate that TRP ion channels are not only involved in sensory functions but are also implicated in regulating the biological characteristics of stem cells. In the present review, we summarize the expressions and functions of TRP ion channels in stem cells, including cancer stem cells. It offers an overview of the current understanding of TRP ion channels in stem cells.
Collapse
|