1
|
Canat A, Atilla D, Torres‐Padilla M. Hyperosmotic stress induces 2-cell-like cells through ROS and ATR signaling. EMBO Rep 2023; 24:e56194. [PMID: 37432066 PMCID: PMC10481651 DOI: 10.15252/embr.202256194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
Mouse embryonic stem cells (ESCs) display pluripotency features characteristic of the inner cell mass of the blastocyst. Mouse embryonic stem cell cultures are highly heterogeneous and include a rare population of cells, which recapitulate characteristics of the 2-cell embryo, referred to as 2-cell-like cells (2CLCs). Whether and how ESC and 2CLC respond to environmental cues has not been fully elucidated. Here, we investigate the impact of mechanical stress on the reprogramming of ESC to 2CLC. We show that hyperosmotic stress induces 2CLC and that this induction can occur even after a recovery time from hyperosmotic stress, suggesting a memory response. Hyperosmotic stress in ESCs leads to accumulation of reactive-oxygen species (ROS) and ATR checkpoint activation. Importantly, preventing either elevated ROS levels or ATR activation impairs hyperosmotic-mediated 2CLC induction. We further show that ROS generation and the ATR checkpoint act within the same molecular pathway in response to hyperosmotic stress to induce 2CLCs. Altogether, these results shed light on the response of ESC to mechanical stress and on our understanding of 2CLC reprogramming.
Collapse
Affiliation(s)
- Antoine Canat
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
| | - Derya Atilla
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
| | - Maria‐Elena Torres‐Padilla
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| |
Collapse
|
2
|
Abdulhasan M, Ruden X, Marben T, Harris S, Ruden DM, Awonuga AO, Puscheck EE, Rappolee DA. Using Live Imaging and Fluorescence Ubiquitinated Cell Cycle Indicator Embryonic Stem Cells to Distinguish G1 Cell Cycle Delays for General Stressors like Perfluoro-Octanoic Acid and Hyperosmotic Sorbitol or G2 Cell Cycle Delay for Mutagenic Stressors like Benzo(a)pyrene. Stem Cells Dev 2022; 31:296-310. [PMID: 35678645 PMCID: PMC9232235 DOI: 10.1089/scd.2021.0330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/17/2022] [Indexed: 12/15/2022] Open
Abstract
Lowest observable adverse effects level (LOAEL) is a standard point-of-departure dose in toxicology. However, first observable adverse effects level (FOAEL) was recently reported and is used, in this study, as one criterion to detect a mutagenic stimulus in a live imager. Fluorescence ubiquitinated cell cycle indicator (FUCCI) embryonic stem cells (ESC) are green in the S-G2-M phase of the cell cycle and not green in G1-phase. Standard media change here is a mild stress that delays G1-phase and media change increases green 2.5- to 5-fold. Since stress is mild, media change rapidly increases green cell number, but higher stresses of environmental toxicants and positive control hyperosmotic stress suppress increased green after media change. Perfluoro-octanoic acid (PFOA) and diethyl phthalate (DEP) previously suppressed progression of nongreen to green cell cycle progression. Here, bisphenol A (BPA), cortisol, and positive control hyperosmotic sorbitol also suppress green fluorescence, but benzo(a)pyrene (BaP) at high doses (10 μM) increases green fluorescence throughout the 74-h exposure. Since any stress can affect many cell cycle phases, messenger RNA (mRNA) markers are best interpreted in ratios as dose-dependent mutagens increase in G2/G1 and nonmutagens increase G1/G2. After 74-h exposure, RNAseq detects G1 and G2 markers and increasing BaP doses increase G2/G1 ratios but increasing hyperosmotic sorbitol and PFOA doses increase G1/G2 marker ratios. BaP causes rapid green increase in FOAEL at 2 h of stimulus, whereas retinoic acid caused significant green fluorescence increases only late in culture. Using a live imager to establish FOAEL and G2 delay with FUCCI ESC is a new method to allow commercial and basic developmental biologists to detect drugs and environmental stimuli that are mutagenic. Furthermore, it can be used to test compounds that prevent mutations. In longitudinal studies, uniquely provided by this viable reporter and live imager protocol, follow-up can be done to test whether the preventative compound itself causes harm.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
| | - Ximena Ruden
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Teya Marben
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, Detroit, Michigan, USA
| | - Sean Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas M. Ruden
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Awoniyi O. Awonuga
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Elizabeth E. Puscheck
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
- Invia Fertility Clinics, Hoffman Estates, Illinois, USA
| | - Daniel A. Rappolee
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biology, University of Windsor, Windsor, Canada
| |
Collapse
|