1
|
Olenic M, Deelkens C, van Hengel J, Schauwer CD, Thorrez L. Nattokinase as a novel food-grade enzyme for long term cell subculture. Food Res Int 2025; 203:115800. [PMID: 40022330 DOI: 10.1016/j.foodres.2025.115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/03/2025]
Abstract
Cellular agriculture and regenerative medicine strive to replace animal-derived products in their processes as much as possible. In these efforts dissociation enzymes required for cell detachment from their substrate are often overlooked. Cell detachment is an essential part of subculturing and to date it is achieved using either animal pancreas-derived trypsin or expensive recombinant enzymes. We found that nattokinase, a fermentation product of Bacillus subtilis subsp. Natto, can be effectively applied for the detachment of bovine myoblasts, mesenchymal stromal cells (MSCs) and human embryonic cell line (H9). We described the suitable enzyme concentrations, incubation times and inhibition procedures for each cell type. Long-term subculture with nattokinase did not negatively affect proliferation nor differentiation of the tested cells and even led to significantly higher number of CD56+ cells in myoblast culture after six passages (88 ± 3 % vs 73 ± 5 %, p = 0.03, n = 6) compared to trypsin control. Efficacy, affordability, and current "generally recognized as safe" status of nattokinase make it an attractive product for cell-based food manufacturing.
Collapse
Affiliation(s)
- Maria Olenic
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Kulak, Kortrijk, Belgium; Veterinary Stem Cell Research Unit, Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chloë Deelkens
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Kulak, Kortrijk, Belgium; Medical Cell Biology, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Jolanda van Hengel
- Medical Cell Biology, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Veterinary Stem Cell Research Unit, Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lieven Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven Kulak, Kortrijk, Belgium.
| |
Collapse
|
2
|
Aalders J, Muiño Mosquera L, van Hengel J. Human stem cell models for Marfan syndrome: a brief overview of the rising star in disease modelling. Front Cell Dev Biol 2025; 12:1498669. [PMID: 39830211 PMCID: PMC11739147 DOI: 10.3389/fcell.2024.1498669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The introduction of pluripotent stem cells into the field of disease modelling resulted in numerous opportunities to study and uncover disease mechanisms in a petri dish. This promising avenue has also been applied to model Marfan syndrome, a disease affecting multiple organ systems, including the skeletal and cardiovascular system. Marfan syndrome is caused by pathogenic variants in FBN1, the gene encoding for the extracellular matrix protein fibrillin-1 which ensembles into microfibrils. There is a poor genotype-phenotype correlation displayed by the diverse clinical manifestations of this disease in patients. Up to now, 52 different human pluripotent stem cells lines have been established and reported for Marfan syndrome. These stem cells have been employed to model aortopathy, skeletal abnormalities and cardiomyopathy in vitro. These models were able to recapitulate key features of the disease that are also observed in patients. The use of pluripotent stem cells will help to uncover disease mechanisms and to identify new therapeutic strategies in Marfan syndrome.
Collapse
Affiliation(s)
- Jeffrey Aalders
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Laura Muiño Mosquera
- Center for Medical Genetics, Ghent University Hospital, Belgium and Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Aalders J, Léger L, Hassannia B, Goossens V, Vanden Berghe T, van Hengel J. Improving cardiac differentiation of human pluripotent stem cells by targeting ferroptosis. Regen Ther 2024; 27:21-31. [PMID: 38496011 PMCID: PMC10940893 DOI: 10.1016/j.reth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
Generation of cardiomyocytes from human pluripotent stem cells (hPSCs) is of high interest for disease modelling and regenerative medicine. hPSCs can provide an unlimited source of patient-specific cardiomyocytes that are otherwise difficult to obtain from individuals. Moreover, the low proliferation rate of adult cardiomyocytes and low viability ex vivo limits the quantity of study material. Most protocols for the differentiation of cardiomyocytes from hPSCs are based on the temporal modulation of the Wnt pathway. However, during the initial stage of GSK-3 inhibition, a substantial number of cells are lost due to detachment. In this study, we aimed to increase the efficiency of generating cardiomyocytes from hPSCs. We identified cell death as a detrimental factor during this initial stage of in vitro cardiomyocyte differentiation. Through pharmacological targeting of different types of cell death, we discovered that ferroptosis was the main cell death type during the first 48 h of the in vitro differentiation procedure. Inhibiting ferroptosis using ferrostatin-1 during cardiomyocyte differentiation resulted in increased robustness and cell yield.
Collapse
Affiliation(s)
- Jeffrey Aalders
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 37a, 2nd floor, 9000, Ghent, Belgium
| | - Laurens Léger
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 37a, 2nd floor, 9000, Ghent, Belgium
| | - Behrouz Hassannia
- Cell Death Signalling Lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Tom Vanden Berghe
- Cell Death Signalling Lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 37a, 2nd floor, 9000, Ghent, Belgium
| |
Collapse
|
4
|
Léger L, De Clercq C, Aalders J, Van Acker-Verberckt K, Braeckmans K, van Hengel J. Photoporation-mediated spatial intracellular delivery of stem cell-derived cardiomyocytes. MethodsX 2024; 12:102548. [PMID: 38292311 PMCID: PMC10825475 DOI: 10.1016/j.mex.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are promising candidates for disease modeling and therapeutic purposes, however, non-viral intracellular delivery in these cells remains challenging. Gold nanoparticle (AuNP)-sensitized photoporation creates transient pores in the cell membrane by vapor nanobubble formation, allowing diffusion of extracellular biomolecules. This non-viral technique was employed to test and optimize its distinct physical mode of action in iPSC-CMs. Photoporation optimization was aimed at achieving high delivery rates while minimizing cell death. Various AuNP concentrations, in conjunction with different laser fluences, were explored to facilitate the intracellular delivery of 10 kDa and 150 kDa FITC-labelled dextran as model macromolecules. Cardiomyocyte viability was assessed using the CellTiter-Glo® viability assay, while the delivery efficiency was quantified through flow cytometry. On 30 day-old cardiomyocytes, AuNP photoporation was able to yield ∼60 % delivery efficiency while maintaining a high cell viability (∼70 %). Overall, higher AuNP concentrations resulted in greater delivery efficiencies, albeit at the expense of lower cell viability. Finally, photoporation was capable of patterning a geometric shape, demonstrating its exceptional selective resolution in delivering molecules to spatially restricted regions of the cell culture. In conclusion, AuNP-photoporation exhibits considerable potential as an effective and gentle non-viral method for intracellular delivery in iPSC-CMs.•AuNP-photoporation is a non-viral intracellular delivery method suitable for iPSC-CMs with high efficiency and cell viability•This method is capable of spatially resolved intracellular delivery with excellent resolution.
Collapse
Affiliation(s)
- Laurens Léger
- Medical Cell Biology Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Chloë De Clercq
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jeffrey Aalders
- Medical Cell Biology Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Kiara Van Acker-Verberckt
- Medical Cell Biology Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jolanda van Hengel
- Medical Cell Biology Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|