1
|
Martínez-Espinosa E, Vicente W, Salinas-Vázquez M, Ramírez-Cruz J. Numerical study of the effect of flow patterns on contaminant removal in a hospital ward with symmetrical and asymmetrical inlet port arrangements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179439. [PMID: 40267647 DOI: 10.1016/j.scitotenv.2025.179439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
The effect of flow patterns on contaminant removal in a hospital ward is studied numerically using the Reynolds Averaged Navier-Stokes (RANS) approach. Transient simulations are performed for three air changes and four ventilation systems. The contaminant is represented by a tracer gas (contaminant air) to study the airflow patterns, contaminant concentration, and contaminant removal in the hospital ward. The simulation is validated through two experimental studies using different ventilation systems, yielding a satisfactory agreement between the predictions and the experimental data. Numerical results indicate that flow patterns have a significant impact on the concentration and removal of contaminants, influenced by the building's geometry and the location of injection ports. In symmetrical arrangements of injection ports, the contamination concentration tends to be non-uniform in the x-z directions. The contaminant removal efficiency is the lowest (0.9322-0.9877) due to jet interference and the formation of dead zones by recirculation regions. In the asymmetrical arrangement of injection ports, the formation of recirculation zones in critical areas is inhibited, resulting in a more uniform contaminant concentration compared to other cases. The contaminant removal efficiency for the nine inlet ports presents the best performance (0.9944-0.99995), as jet interference is minimized and dead zones are eliminated. Furthermore, the overall concentration is <0.55 % for 9 ACH and 0.0048 % for 16 ACH in 1200 s. However, implementing more inlet ports (13) than in Case 3 affects the contaminant removal efficiency (0.9745-0.9991) due to jet interference. Therefore, according to the building geometry, a correct number of inlet ports and an appropriate distribution are essential in contaminant removal.
Collapse
Affiliation(s)
- E Martínez-Espinosa
- Industrial and Environmental Processes Department, Instituto de Ingeniería, UNAM, Ciudad Universitaria, 04510 Mexico City, Mexico.
| | - W Vicente
- Industrial and Environmental Processes Department, Instituto de Ingeniería, UNAM, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - M Salinas-Vázquez
- Industrial and Environmental Processes Department, Instituto de Ingeniería, UNAM, Ciudad Universitaria, 04510 Mexico City, Mexico
| | | |
Collapse
|
2
|
Xu J, Zhai H, So LK, Wang C, Guo H. Performance evaluation of a recirculated personalized air curtain combined with displacement ventilation in mitigating indoor airborne transmission. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138446. [PMID: 40319853 DOI: 10.1016/j.jhazmat.2025.138446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
To mitigate the risk of airborne transmission, we explored the integration of a recirculated personalized air curtain (rPAC) with displacement ventilation (DV) using computational fluid dynamics (CFD) simulations. The rPAC can utilize indoor air directly, drawing clean air from the lower room space supplied by the DV system. Our study assessed the effectiveness of the rPAC in reducing the intake fraction of expiratory droplets from transient coughing and steady speaking indoors. We categorized droplets into small (initial diameter ≤20 μm), medium (50 μm), and large (100 μm) sizes. Large droplets from both activities generally had negligible intake fractions. The rPAC effectively reduced the intake fraction from coughing and speaking, although its performance varied with respiratory activities and exhalation directions. At 0° and 30°, the rPAC reduced the intake fraction of small coughing droplets by over 90 % and medium droplets by 74 %-98 %, with significant reductions also observed for speaking. However, at 60°, the rPAC increased the intake fraction of medium coughing droplets and small droplets from speaking due to complex airflow-droplet interaction dynamics. This study highlights the potential of rPAC as an effective control measure to improve indoor air quality and mitigate respiratory disease transmission, though its effectiveness is influenced by exhalation direction and droplet size.
Collapse
Affiliation(s)
- Jingcui Xu
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Haoyu Zhai
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Lok Kwan So
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Cunteng Wang
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Hai Guo
- Air Quality Studies, Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
3
|
Geisler SM, Lausch KH, Hehnen F, Schulz I, Kertzscher U, Kriegel M, Paschereit CO, Schimek S, Hasirci Ü, Brockmann G, Moter A, Senftleben K, Moritz S. Comparing strategies for the mitigation of SARS-CoV-2 airborne infection risk in tiered auditorium venues. COMMUNICATIONS ENGINEERING 2024; 3:161. [PMID: 39521872 PMCID: PMC11550442 DOI: 10.1038/s44172-024-00297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The COVID-19 pandemic demonstrated that reliable risk assessment of venues is still challenging and resulted in the indiscriminate closure of many venues worldwide. Therefore, this study used an experimental, numerical and analytical approach to investigate the airborne transmission risk potential of differently ventilated, sized and shaped venues. The data were used to assess the magnitude of effect of various mitigation measures and to develop recommendations. Here we show that, in general, positions in the near field of an emission source were at high risk, while the risk of infection from positions in the far field varied depending on the ventilation strategy. Occupancy, airflow rate, residence time, virus variants, activity level and face masks affected the individual and global infection risk in all venues. The global infection risk was lowest for the displacement ventilation case, making it the most effective ventilation strategy for keeping airborne transmission and the number of secondary cases low, compared to mixing or natural ventilation.
Collapse
Affiliation(s)
- S Mareike Geisler
- Section of Clinical Infectious Diseases, University Hospital Halle (Saale), Ernst-Grube Str. 40, 06120, Halle (Saale), Germany.
| | - Kevin H Lausch
- Institute of Energy Technology, Department Energy, Comfort and Health in Buildings, Technical University of Berlin, Marchstraße 4, 10587, Berlin, Germany
| | - Felix Hehnen
- Biofluid Mechanics Laboratory, Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Isabell Schulz
- Biofluid Mechanics Laboratory, Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrich Kertzscher
- Biofluid Mechanics Laboratory, Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Kriegel
- Institute of Energy Technology, Department Energy, Comfort and Health in Buildings, Technical University of Berlin, Marchstraße 4, 10587, Berlin, Germany
| | - C Oliver Paschereit
- Institute of Fluid Dynamics and Technical Acoustics, Hermann-Föttinger-Institute, Chair of Fluid Dynamics, Technical University of Berlin, Müller-Breslau-Str. 8, 10623, Berlin, Germany
| | - Sebastian Schimek
- Institute of Fluid Dynamics and Technical Acoustics, Hermann-Föttinger-Institute, Chair of Fluid Dynamics, Technical University of Berlin, Müller-Breslau-Str. 8, 10623, Berlin, Germany
| | - Ümit Hasirci
- Biofluid Mechanics Laboratory, Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Gerrid Brockmann
- Institute of Energy Technology, Department Energy, Comfort and Health in Buildings, Technical University of Berlin, Marchstraße 4, 10587, Berlin, Germany
| | - Annette Moter
- Charité - Universitätsmedizin Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Karolin Senftleben
- Section of Clinical Infectious Diseases, University Hospital Halle (Saale), Ernst-Grube Str. 40, 06120, Halle (Saale), Germany
| | - Stefan Moritz
- Section of Clinical Infectious Diseases, University Hospital Halle (Saale), Ernst-Grube Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
4
|
Park S, Rim D. Human exposure to air contaminants under the far-UVC system operation in an office: effects of lamp position and ventilation condition. Sci Rep 2024; 14:24465. [PMID: 39424884 PMCID: PMC11489401 DOI: 10.1038/s41598-024-75245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
The far-UVC (222 nm) system has emerged as a solution for controlling airborne transmission, yet its effect on indoor air quality, particularly concerning positioning, remains understudied. In this study, we examined the impact of far-UVC lamp position on the disinfection and secondary contaminant formation in a small office. We employed a three-dimensional computational fluid dynamics (CFD) model to integrate UV intensity fields formed by different lamp positions (ceiling-mounted, wall-mounted, and stand-alone types) along with the air quality model. Our findings reveal that the ceiling-mounted type reduces human exposure to airborne pathogens by up to 80% compared to scenarios without far-UVC. For all the lamp positions, O3 concentration in the breathing zone increases by 4-6 ppb after one hour of operation. However, it should be noted that a high concentration zone (> 25 ppb) forms near the lamp when it is turned on. Moreover, ventilation plays a crucial role in determining human exposure to airborne pathogens and secondary contaminants. Increasing the ventilation rate from 0.7 h-1 to 4 h-1 reduces airborne pathogen and secondary contaminant concentrations by up to 90%. However, caution is warranted as higher ventilation rates can lead to elevated O3 indoors, especially under conditions of high outdoor O3 concentrations.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Donghyun Rim
- Architectural Engineering Department, Pennsylvania State University, 408 Engineering Collaborative Research and Education (ECoRE) Building, University Park, PA, USA.
| |
Collapse
|
5
|
Zhang TT, Li N, Xu X, Jiang N, Lv M. Measurement and prediction of the detachment of Aspergillus niger spores in turbulent flows. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134910. [PMID: 38889465 DOI: 10.1016/j.jhazmat.2024.134910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Aspergillus niger (A. niger) spores can induce numerous health problems. Once the airflow-imposed drag force on an A. niger spore exceeds its binding force with the colony, the spore is detached. Turbulent flow may considerably increase the spore detachment. No method is currently available for prediction of the drag force on a spore and its detachment in turbulent flows. This investigation measured the turbulent velocities and detachment of A. niger colonies in a wind tunnel. Computational fluid dynamics (CFD) was employed to model an A. niger unit subjected to turbulent flow blowing. The top 1 % quantile instantaneous velocity of the turbulent flow was specified as the steady entry flow boundary condition for solving the peak velocity distribution and the peak drag forces onto spores. The predicted spore detachment ratios were compared with the measurement data for model validation. The results revealed that the spore detachment ratios with a turbulence intensity of 17 % to 20 % can be twice to triple the ratio with a turbulence intensity of approximately 1 %, when the average velocity for blowing remains the same. The proposed CFD model can accurately predict the detachment ratios of the A. niger spores. ENVIRONMENTAL IMPLICATION: Some people are sensitive to the Aspergillus niger (A. niger) spores, and excessive exposure can cause nasal congestion, skin tingling, coughing, and even asthma. Turbulent flow can considerably increase the spore detachment, due to the increased airflow-imposed drag force on the spores during turbulence. This investigation developed a numerical model to solve for the peak velocity distribution and the peak drag forces onto spores in turbulent flows to predict the spore detachment. With the numerical tool, the airborne fungal spore concentrations would be predictable, which paves a way for intelligent and precise control of fungal aerosol pollution.
Collapse
Affiliation(s)
- Tengfei Tim Zhang
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China; School of Civil Engineering, Dalian University of Technology, Dalian, China
| | - Nuo Li
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xinzi Xu
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China; Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Nan Jiang
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Mengqiang Lv
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
6
|
Maurizi L, Simon-Sánchez L, Vianello A, Nielsen AH, Vollertsen J. Every breath you take: High concentration of breathable microplastics in indoor environments. CHEMOSPHERE 2024; 361:142553. [PMID: 38851509 DOI: 10.1016/j.chemosphere.2024.142553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
The widespread presence of microplastics (MPs) in the air and their potential impact on human health underscore the pressing need to develop robust methods for quantifying their presence, particularly in the breathable fraction (<5 μm). In this study, Raman micro-spectroscopy (μRaman) was employed to assess the concentration of indoor airborne MPs >1 μm in four indoor environments (a meeting room, a workshop, and two apartments) under different levels of human activity. The indoor airborne MP concentration spanned between 58 and 684 MPs per cubic meter (MP m-3) (median 212 MP m-3, MPs/non-plastic ratio 0-1.6%), depending not only on the type and level of human activity, but also on the surface area and air circulation of the investigated locations. Additionally, we assessed in the same environments the filtration performance of a type IIR surgical facemask, which could overall retain 85.4 ± 3.9% of the MPs. We furthermore estimated a human MP intake from indoor air of 3415 ± 2881 MPs day-1 (mostly poly-amide MPs), which could be decreased to 283 ± 317 MPs day-1 using the surgical facemask. However, for the breathable fraction of MPs (1-5 μm), the efficiency of the surgical mask was reduced to 57.6%.
Collapse
Affiliation(s)
- L Maurizi
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark.
| | - L Simon-Sánchez
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| | - A Vianello
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| | - A H Nielsen
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| | - J Vollertsen
- Department of The Built Environment, Aalborg University, 9220, Aalborg, Denmark
| |
Collapse
|
7
|
Park S, Won Y, Rim D. Formation and Transport of Secondary Contaminants Associated with Germicidal Ultraviolet Light Systems in an Occupied Classroom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12051-12061. [PMID: 38922431 DOI: 10.1021/acs.est.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Germicidal ultraviolet light (GUV) systems are designed to control airborne pathogen transmission in buildings. However, it is important to acknowledge that certain conditions and system configurations may lead GUV systems to produce air contaminants including oxidants and secondary organic aerosols (SOA). In this study, we modeled the formation and dispersion of oxidants and secondary contaminants generated by the operation of GUV systems employing ultraviolet C 254 and 222 nm. Using a three-dimensional computational fluid dynamics model, we examined the breathing zone concentrations of chemical species in an occupied classroom. Our findings indicate that operating GUV 222 leads to an approximate increase of 10 ppb in O3 concentration and 5.2 μg·m-3 in SOA concentration compared to a condition without GUV operation, while GUV 254 increases the SOA concentration by about 1.2 μg·m-3, with a minimal impact on the O3 concentration. Furthermore, increasing the UV fluence rate of GUV 222 from 1 to 5 μW·cm-2 results in up to 80% increase in the oxidants and SOA concentrations. For GUV 254, elevating the UV fluence rate from 30 to 50 μW·cm-2 or doubling the radiating volume results in up to 50% increase in the SOA concentration. Note that indoor airflow patterns, particularly buoyancy-driven airflow (or displacement ventilation), lead to 15-45% lower SOA concentrations in the breathing zone compared to well-mixed airflow. The results also reveal that when the ventilation rate is below 2 h-1, operating GUV 254 has a smaller impact on human exposure to secondary contaminants than GUV 222. However, GUV 254 may generate more contaminants than GUV 222 when operating at high indoor O3 levels (>15 ppb). These results suggest that the design of GUV systems should consider indoor O3 levels and room ventilation conditions.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Youngbo Won
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Donghyun Rim
- Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Zhang TT, Xu X, Lv M. Measurement and prediction of the Aspergillus niger spore detachment from a vesicle unit subjected to air-blowing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168714. [PMID: 38007138 DOI: 10.1016/j.scitotenv.2023.168714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Detachment of fungal spores from growing colonies results in human exposure. Thus far, the distribution of the binding forces of the spores in a fungal unit is unknown, so that precise prediction of the spores detachment is quite challenging. This investigation used centrifugal separation to measure the binding forces of the spores. Aspergillus niger (A. niger) colonies on a culture plate were placed in a centrifuge, the detached spores were counted, and this number was used to obtain the distribution of binding forces. Next, the air-blowing of an A. niger unit was modeled by computational fluid dynamics (CFD). A spore was judged to be detached if the air-imposed drag force was greater than the binding force. For model validation, the predicted spore detachment ratios were compared with the ratios measured in a wind tunnel test. The results revealed that the binding forces of the spores obeyed the log-normal distribution. The binding forces of the distal spores from colonies with a growth age of 66 h ranged from 0 nN to 4.0 nN and had a mean of 0.65 nN. The CFD modeling predicted the detachment ratios of the distal spores with good accuracy.
Collapse
Affiliation(s)
- Tengfei Tim Zhang
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China; School of Civil Engineering, Dalian University of Technology, Dalian, China.
| | - Xinzi Xu
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Mengqiang Lv
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| |
Collapse
|
9
|
Park S, Mistrick R, Sitzabee W, Rim D. Effect of ventilation strategy on performance of upper-room ultraviolet germicidal irradiation (UVGI) system in a learning environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165454. [PMID: 37467991 DOI: 10.1016/j.scitotenv.2023.165454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Upper-room ultraviolet germicidal irradiation (UVGI) system is recently in the limelight as a potentially effective method to mitigate the risk of airborne virus infection in indoor environments. However, few studies quantitatively evaluated the relationship between ventilation effectiveness and virus disinfection performance of a UVGI system. The objective of this study is to investigate the effects of ventilation strategy on detailed airflow distributions and UVGI disinfection performance in an occupied classroom. Three-dimensional computational fluid dynamics (CFD) simulations were performed for representative cooling, heating, and ventilation scenarios. The results show that when the ventilation rate is 1.1 h-1 (the minimum ventilation rate based on ASHRAE 62.1), enhancing indoor air circulation with the mixing fan notably improves the UVGI disinfection performance, especially for cooling with displacement ventilation and all-air-heating conditions. However, increasing indoor air mixing yields negligible effect on the disinfection performance for forced-convection cooling condition. The results also reveal that regardless of indoor thermal condition, disinfection effectiveness of a UVGI system increases as ventilation effectiveness is close to unity. Moreover, when the room average air speed is >0.1 m/s, upper-room UVGI system could yield about 90% disinfection effect for the aerosol size of 1 μm-10 μm. The findings of this study imply that upper-room UVGI systems in indoor environments (i.e., classrooms, hospitals) should be designed considering ventilation strategy and occupancy conditions, especially for occupied buildings with insufficient air mixing throughout the space.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Architectural Engineering, Pennsylvania State University, United States of America.
| | - Richard Mistrick
- Architectural Engineering Department, Pennsylvania State University, 104 Engineering Unit A, University Park, PA 16802, United States of America.
| | - William Sitzabee
- Pennsylvania State University, 201 Physical Plant Building, University Park, PA 16802, United States of America.
| | - Donghyun Rim
- Architectural Engineering Department, Pennsylvania State University, 222 Engineering Unit A, University Park, PA 16802, United States of America.
| |
Collapse
|
10
|
Liu Z, Li H, Chu J, Huang Z, Xiao X, Wang Y, He J. The impact of high background particle concentration on the spatiotemporal distribution of Serratia marcescens bioaerosol. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131863. [PMID: 37354722 DOI: 10.1016/j.jhazmat.2023.131863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Airborne transmission is a well-established mode of dissemination for infectious diseases, particularly in closed environments. However, previous research has often overlooked the potential impact of background particle concentration on bioaerosol characteristics. We compared the spatial and temporal distributions of bioaerosols under two levels of background particle concentration: heavily polluted (150-250 μg/m3) and excellent (0-35 μg/m3) in a typical ward. Serratia marcescens bioaerosol was adopted as a bioaerosol tracer, and the bioaerosol concentrations were quantified using six-stage Andersen cascade impactors. The results showed a significant reduction (over at least 62.9%) in bioaerosol concentration under heavily polluted levels compared to excellent levels at all sampling points. The temporal analysis also revealed that the decay rate of bioaerosols was higher (at least 0.654 min-1) under heavily polluted levels compared to excellent levels. These findings suggest that background particles can facilitate bioaerosol removal, contradicting the assumption made in previous research that background particle has no effect on bioaerosol characteristics. Furthermore, we observed differences in the size distribution of bioaerosols between the two levels of background particle concentration. The average bioaerosols size under heavily polluted levels was found to be higher than that under excellent levels, and the average particle size under heavily polluted levels gradually increased with time. In conclusion, these results highlight the importance of considering background particle concentration in future research on bioaerosol characteristics.
Collapse
Affiliation(s)
- Zhijian Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Haochuan Li
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jiaqi Chu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhenzhe Huang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Xia Xiao
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Yongxin Wang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Junzhou He
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China.
| |
Collapse
|
11
|
Martínez-Espinosa E, Carvajal-Mariscal I. Virus-laden droplet nuclei in vortical structures associated with recirculation zones in indoor environments: A possible airborne transmission of SARS-CoV-2. ENVIRONMENTAL ADVANCES 2023; 12:100376. [PMID: 37193349 PMCID: PMC10163794 DOI: 10.1016/j.envadv.2023.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Droplet nuclei dispersion patterns in indoor environments are reviewed from a physics view to explore the possibility of airborne transmission of SARS-CoV-2. This review analyzes works on particle dispersion patterns and their concentration in vortical structures in different indoor environments. Numerical simulations and experiments reveal the formation of the buildings' recirculation zones and vortex flow regions by flow separation, airflow interaction around objects, internal dispersion of airflow, or thermal plume. These vortical structures showed high particle concentration because particles are trapped for long periods. Then a hypothesis is proposed to explain why some medical studies detect the presence of SARS-CoV-2 and others do not detect the virus. The hypothesis proposes that airborne transmission is possible if virus-laden droplet nuclei are trapped in vortical structures associated with recirculation zones. This hypothesis is reinforced by a numerical study in a restaurant that presented possible evidence of airborne transmission by a large recirculating air zone. Furthermore, a medical study in a hospital is discussed from a physical view for identifying the formation of recirculation zones and their relation with positive tests for viruses. The observations show air sampling site located in this vortical structure is positive for the SARS-CoV-2 RNA. Therefore, the formation of vortical structures associated with recirculation zones should be avoided to minimize the possibility of airborne transmission. This work tries to understand the complex phenomenon of airborne transmission as a way in the prevention of transmission of infectious diseases.
Collapse
Affiliation(s)
- E Martínez-Espinosa
- Industrial and Environmental Processes Department, Instituto de Ingeniería, UNAM, Ciudad Universitaria, Mexico City 04510, México
| | | |
Collapse
|
12
|
Liu S, Deng Z. Transmission and infection risk of COVID-19 when people coughing in an elevator. BUILDING AND ENVIRONMENT 2023; 238:110343. [PMID: 37143581 PMCID: PMC10122966 DOI: 10.1016/j.buildenv.2023.110343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
People in cities use elevators daily. With the COVID-19 pandemic, there are more worries about elevator safety, since elevators are often small and crowded. This study used a proven CFD model to see how the virus could spread in elevators. We simulated five people taking in an elevator for 2 min and analyzed the effect of different factors on the amount of virus that could be inhaled, such as the infected person's location, the standing positions of the persons, and the air flow rate. We found that the position of the infected person and the direction they stood greatly impacted virus transmission in the elevator. The use of mechanical ventilation with a flow rate of 30 ACH (air changes per hour) was effective in reducing the risk of infection. In situations where the air flow rate was 3 ACH, we found that the highest number of inhaled virus copies could range from 237 to 1186. However, with a flow rate of 30 ACH, the highest number was reduced to 153 to 509. The study also showed that wearing surgical masks decreased the highest number of inhaled virus copies to 74 to 155.
Collapse
Affiliation(s)
- Sumei Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhipeng Deng
- Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY, 13244, United States
| |
Collapse
|
13
|
Saeedi R, Ahmadi E, Hassanvand MS, Mohasel MA, Yousefzadeh S, Safari M. Implemented indoor airborne transmission mitigation strategies during COVID-19: a systematic review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:11-20. [PMID: 37152068 PMCID: PMC9968468 DOI: 10.1007/s40201-023-00847-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/02/2023] [Indexed: 05/09/2023]
Abstract
The COVID-19 pandemic has inflicted major economic and health burdens across the world. On the other hand, the potential airborne transmission of SARS-COV-2 via air can deeply undermine the effectiveness of countermeasures against spreading the disease. Therefore, there is an intense focus to look for ways to mitigate the COVID-19 spread within various indoor settings. This work systematically reviewed articles regarding airborne transmission of SARS-COV2 in various indoor settings since the onset of the pandemic. The systematic search was performed in Scopus, Web of Science, and PubMed databases and has returned 19 original articles carefully screened with regard to inclusion and exclusion criteria. The results showed that the facilities, such as dormitories and classrooms, received the most attention followed by office buildings, healthcare facilities, residential buildings, and other potential enclosed spaces such as a metro wagon. Besides, the majority of the studies were conducted experimentally while other studies were done using computer simulations. United States (n = 5), Spain (n = 4) and China (n = 3) were the top three countries based on the number of performed research. Ventilation rate was the most influential parameter in controlling the infection spread. CO2 was the primary reference for viral spread in the buildings. The use of natural ventilation or a combination of mechanical and natural ventilations was found to be highly effective in the studies. The current work helps in furthering research on effective interventions to improve indoor air quality and control the spread of COVID-19 and other respiratory diseases. Supplementary information The online version contains supplementary material available at 10.1007/s40201-023-00847-0.
Collapse
Affiliation(s)
- Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health, Safety and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ahmadi
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Centre for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Abtahi Mohasel
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Yousefzadeh
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Safari
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Mao Y, Xie H, Liang J, He J, Ren J. Experimental study on the control effects of different strategies on particle transportation in a conference room: Mechanical ventilation, baffle, portable air cleaner, and desk air cleaner. ATMOSPHERIC POLLUTION RESEARCH 2023; 14:101716. [PMID: 36942301 PMCID: PMC9996463 DOI: 10.1016/j.apr.2023.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
To control the spread and transmission of airborne particles (especially SARS-CoV-2 coronavirus, recently) in the indoor environment, many control strategies have been employed. Comparisons of these strategies enable a reasonable choice for indoor environment control and cost-effectiveness. In this study, a series of experiments were conducted in a full-scale chamber to simulate a conference room. The control effects of four different strategies (a ventilation system (320 m3/h) with and without a baffle, a specific type of portable air cleaner (400 m3/h) and a specific type of desk air cleaner (DAC, 160 m3/h)) on the transportation of particles of different sizes were studied. In addition, the effects of coupling the ventilation strategies with five forms of indoor airflow organization (side supply and side or ceiling return, ceiling supply and ceiling or side return, floor supply and ceiling return) were evaluated. The cumulative exposure level (CEL) and infection probability were selected as evaluation indexes. The experimental results showed that among the four strategies, the best particle control effect was achieved by the PAC. The reduction in CEL for particles in the overall size range was 22.1% under the ventilation system without a baffle, 34.3% under the ventilation system with a baffle, 46.4% with the PAC, and 10.1% with the DAC. The average infection probabilities under the four control strategies were 11.3-11.8%, 11.1-11.8%, 9.1-9.5%, and 18.2-19.7%, respectively. Among the five different forms of airflow organization, the floor supply and ceiling return mode exhibited the best potential ability to remove particles.
Collapse
Affiliation(s)
- Yanhui Mao
- School of Architecture and Transportation Engineering, Ningbo University of Technology, Ningbo, 315211, China
| | - Honglei Xie
- Architectural Design & Research Institute of Ningbo University, Ningbo, 315211, China
| | - Jianzhou Liang
- School of Architecture and Transportation Engineering, Ningbo University of Technology, Ningbo, 315211, China
| | - Junjie He
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jianlin Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
15
|
Jing Y, Li F, Gu Z, Tang S. Identifying spatiotemporal information of the point pollutant source indoors based on the adjoint-regularization method. BUILDING SIMULATION 2023; 16:589-602. [PMID: 36789406 PMCID: PMC9912206 DOI: 10.1007/s12273-022-0975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 06/18/2023]
Abstract
Fast and accurate identification of the pollutant source location and release rate is important for improving indoor air quality. From the perspective of public health, identification of the airborne pathogen source in public buildings is particularly important for ensuring people's safety and health. The existing adjoint probability method has difficulty in distinguishing the temporal source, and the optimization algorithm can only analyze a few potential sources in space. This study proposed an algorithm combining the adjoint-pulse and regularization methods to identify the spatiotemporal information of the point pollutant source in an entire room space. We first obtained a series of source-receptor response matrices using the adjoint-pulse method in the room based on the validated CFD model, and then used the regularization method and composite Bayesian inference to identify the release rate and location of the dynamic pollutant source. The results showed that the MAPEs (mean absolute percentage errors) of estimated source intensities were almost less than 15%, and the source localization success rates were above 25/30 in this study. This method has the potential to be used to identify the airborne pathogen source in public buildings combined with sensors for disease-specific biomarkers.
Collapse
Affiliation(s)
- Yuanqi Jing
- College of Urban Construction, Nanjing Tech University, Nanjing, 210009 China
| | - Fei Li
- College of Urban Construction, Nanjing Tech University, Nanjing, 210009 China
| | - Zhonglin Gu
- College of Urban Construction, Nanjing Tech University, Nanjing, 210009 China
| | - Shibo Tang
- College of Urban Construction, Nanjing Tech University, Nanjing, 210009 China
| |
Collapse
|
16
|
Kong X, Chang Y, Fan M, Li H. Analysis on the thermal performance of low-temperature radiant floor coupled with intermittent stratum ventilation (LTR-ISV) for space heating. ENERGY AND BUILDINGS 2023; 278:112623. [PMID: 36345312 PMCID: PMC9630304 DOI: 10.1016/j.enbuild.2022.112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
With increasing energy use and outbreaks of respiratory infectious diseases (such as COVID-19) in buildings, there is a growing interest in creating healthy and energy-efficient indoor environments. A novel heating system named low-temperature radiant floor coupled with intermittent stratum ventilation (LTR-ISV) is proposed in this study. Thermal performance, indoor air quality, energy and exergy performance were investigated and compared with conventional radiant floor heating (CRFH) and conventional radiant floor heating with mixing ventilation (CRFH + MV). The results indicated that LTR-ISV had a more uniform operative temperature distribution and overall thermal sensation, and air mixing was enhanced without generating additional draft sensation. Compared with CRFH and CRFH + MV, the indoor CO2 concentration in LTR-ISV can be reduced by 1355 ppm and 400 ppm, respectively. Airborne transmission risk can also be reduced by 5.35 times. The coefficient of performance for CRFH, CRFH + MV, and LTR-ISV during working hours was 4.2, 2.5, and 3.4, respectively. The lower value of LTR-ISV was due to the high energy usage of the primary air handing unit. In the non-working hours, LTR-ISV was 0.6 and 1.3 higher compared to CRFH and CRFH + MV, respectively. The exergy efficiency of LTR-ISV, CRFH, and CRFH + MV was 81.77 %, 76.43 %, and 64.71 %, respectively. Therefore, the LTR-ISV system can meet the requirements of high indoor air quality and thermal comfort and provides a reference for the energy-saving use of low-grade energy in space heating.
Collapse
Affiliation(s)
- Xiangfei Kong
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yufan Chang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
- Department of Building Environment and Energy, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Man Fan
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Han Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
17
|
Cho J, Kim J, Kim Y. Development of a non-contact mobile screening center for infectious diseases: Effects of ventilation improvement on aerosol transmission prevention. SUSTAINABLE CITIES AND SOCIETY 2022; 87:104232. [PMID: 36212168 PMCID: PMC9526512 DOI: 10.1016/j.scs.2022.104232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Under the global landscape of the prolonged COVID-19 pandemic, the number of individuals who need to be tested for COVID-19 through screening centers is increasing. However, the risk of viral infection during the screening process remains significant. To limit cross-infection in screening centers, a non-contact mobile screening center (NCMSC) that uses negative pressure booths to improve ventilation and enable safe, fast, and convenient COVID-19 testing is developed. This study investigates aerosol transmission and ventilation control for eliminating cross-infection and for rapid virus removal from the indoor space using numerical analysis and experimental measurements. Computational fluid dynamics (CFD) simulations were used to evaluate the ventilation rate, pressure differential between spaces, and virus particle removal efficiency in NCMSC. We also characterized the airflow dynamics of NCMSC that is currently being piloted using particle image velocimetry (PIV). Moreover, design optimization was performed based on the air change rates and the ratio of supply air (SA) to exhaust air (EA). Three ventilation strategies for preventing viral transmission were tested. Based on the results of this study, standards for the installation and operation of a screening center for infectious diseases are proposed.
Collapse
Key Words
- ACH, Air Changes per Hour
- AR, Anteroom
- Aerosol transmission
- CFD, Computational Fluid Dynamics
- Computational fluid dynamics (CFD)
- EA, Eexhaust Air
- ER, Examination Room
- HCW, Health Care Worker
- Infectious disease
- NCMSC, Non-Contact Mobile Screening Center
- OA, Outdoor Air
- PIV, Particle Image Velocimetry
- Particle image velocimetry (PIV)
- SA, Supply Air
- SCB, Specimen Collection Booth
- Screening center
- TA, Transfer Air
- Ventilation strategy
Collapse
Affiliation(s)
- Jinkyun Cho
- Department of Building and Plant Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Jinho Kim
- Department of Fire Protection, Safety and Facilities, Suwon Science College, Hwasung 18516, Republic of Korea
| | - Yundeok Kim
- Department of Architectural Engineering, Woosong University, Daejeon 34606, Republic of Korea
| |
Collapse
|
18
|
Ahmadzadeh M, Shams M. A numerical approach for preventing the dispersion of infectious disease in a meeting room. Sci Rep 2022; 12:16959. [PMID: 36217014 PMCID: PMC9549042 DOI: 10.1038/s41598-022-21161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022] Open
Abstract
Airborne transmission of respiratory aerosols carrying infectious viruses has generated many concerns about cross-contamination risks, particularly in indoor environments. ANSYS Fluent software has been used to investigate the dispersion of the viral particles generated during a coughing event and their transport dynamics inside a safe social-distance meeting room. Computational fluid dynamics based on coupled Eulerian-Lagrangian techniques are used to explore the characteristics of the airflow field in the domain. The main objective of this study is to investigate the effects of the window opening frequency, exhaust layouts, and the location of the air conditioner systems on the dispersion of the particles. The results show that reducing the output capacity by raising the concentration of suspended particles and increasing their traveled distance caused a growth in the individuals' exposure to contaminants. Moreover, decreasing the distance between the ventilation systems installed location and the ceiling can drop the fraction of the suspended particles by over 35%, and the number of individuals who are subjected to becoming infected by viral particles drops from 6 to 2. As well, the results demonstrated when the direction of input airflow and generated particles were the same, the fraction of suspended particles of 4.125%, whereas if the inputs were shifted to the opposite direction of particle injection, the fraction of particles in fluid increased by 5.000%.
Collapse
Affiliation(s)
- Mahdi Ahmadzadeh
- Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Pardis St., Vanak Sq., Tehran, Iran
| | - Mehrzad Shams
- Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Pardis St., Vanak Sq., Tehran, Iran.
| |
Collapse
|
19
|
Zhuang X, Xu Y, Zhang L, Li X, Lu J. Experiment and numerical investigation of inhalable particles and indoor environment with ventilation system. ENERGY AND BUILDINGS 2022; 271:112309. [PMID: 35855051 PMCID: PMC9284541 DOI: 10.1016/j.enbuild.2022.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
After the outbreak of COVID-19, the indoor environment has become particularly important in closed spaces, being a common concern in environmental science and public health, and of great significance for the building environment. To improve the indoor air quality and control the spread of viruses, the analysis of inhalable particles in indoor environments is critical. In this research, we study standards focused on inhalable particles and indoor environmental quality, as well as analyzing the movement and diffusion of indoor particles. Based on our analysis, we conduct an experimental study to determine the distribution of indoor inhalable particles of different sizes before and after diffusion under the conditions of underfloor air distribution. Furthermore, the mathematical modeling method is adopted to simulate the indoor flow field, particle trajectories, and pollutant dispersion process. The k-ε two-equation model is applied as the turbulence model in the numerical simulation, while the Lagrangian discrete phase model is adopted to trace the motion of particles and analyze the distribution characteristics of indoor particles. The results demonstrate that fine particles (i.e., those with size less than 0.5 μm) have a significant impact on the indoor particle concentration, while coarse particles (i.e., with size above 2.5 μm) have a greater influence on the total mass concentration of indoor particles. Small-sized particles can easily follow the airflow and diffuse to upper parts of the room. Overall, the effects of indoor particles on indoor air quality, including the potential threat of aerosol transmission of respiratory infectious diseases, are non-negligible. Application of the presented research can contribute to improving the health-related aspects of the building environment.
Collapse
Affiliation(s)
- Xinyu Zhuang
- College of Quality & Standardization, Qingdao University, Qingdao 266071, China
| | - Yisong Xu
- School of Business, Qingdao University, Qingdao 266071, China
| | - Li Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
- BMP Construction Consulting(Shanghai) Co., Ltd., Shanghai 200336, China
| | - Xin Li
- School of Tourism and Geography Science, Qingdao University, Qingdao 266071, China
- Advanced Institute of Culture & Tourism, Qingdao University, Qingdao 266071, China
| | - Jie Lu
- Qingdao Institute of Standardization, Qingdao 266101, China
| |
Collapse
|