1
|
DiCillo EB, Pisetsky DS, Svenungsson E, Diaz-Gallo LM, Gunnarsson I, Tedder TF. Characterization of autoantibody profiles in clusters of systemic lupus erythematosus using a novel autoantigen discovery technology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:903-916. [PMID: 40180327 DOI: 10.1093/jimmun/vkae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/21/2024] [Indexed: 04/05/2025]
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease characterized by a wide range of clinical and immunologic manifestations, most prominently, the production of autoantibodies to nuclear components (ANAs). A previous study delineated four SLE patient clusters based on autoantibody expression to common antigens. To further assess autoantibody diversity within these clusters, we surveyed serum autoantibody expression using a novel autoantigen discovery technology, the Antigenome Platform. This phage-based system assesses serum antibody interactions with large protein fragments (up to 250 amino acids) spanning approximately 90% of the human genome. Bound autoantibody targets were identified through next-generation sequencing and robust bioinformatics and statistical analysis. Our study revealed 88, 49, 10, and 24 autoantibodies that expand the characterization of four SLE clusters, including 24 autoantibodies that characterize a cluster of patients lacking common autoantibodies by conventional assays. Further, some autoantibodies identified have potential links to patient disease features. Although SLE is characterized by antinuclear antibody expression, a significant proportion of autoantigens (ranging from 28% to 54%) in each cluster localized to the cytoplasm, which suggests extensive autoreactivity beyond targets in the cell nucleus that formed the original basis of clustering. This study identifies new markers to aid in the clustering and understanding of SLE disease subtypes and provides a rationale for elucidating autoantibody expression in SLE beyond antinuclear antibodies.
Collapse
Affiliation(s)
- Europe B DiCillo
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, United States
| | - David S Pisetsky
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Duke University Medical Center and Medical Research Service, Veterans Administration Medical Center, Durham, NC, United States
| | - Elisabet Svenungsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lina-Marcela Diaz-Gallo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas F Tedder
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
2
|
Henning S, Reimers T, Abdulahad W, Fierro JJ, Doornbos-van der Meer B, Bootsma H, Horvath B, de Leeuw K, Westra J. Low-density granulocytes and neutrophil extracellular trap formation are increased in incomplete systemic lupus erythematosus. Rheumatology (Oxford) 2025; 64:1234-1242. [PMID: 38775454 PMCID: PMC11879334 DOI: 10.1093/rheumatology/keae300] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/15/2024] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVE To investigate the proportion of low-density granulocytes (LDGs), circulating plasma neutrophil extracellular traps (NETs) and serum-induced NET formation in patients with incomplete SLE (iSLE) and SLE. METHODS LDGs were measured cross-sectionally in 18 iSLE patients, 11 SLE patients and 14 healthy controls (HCs), whereas circulating NETs and serum-induced NET formation were assessed in 35 iSLE patients, 41 SLE patients and 16 HCs. LDGs (CD14lowCD15+) were measured in peripheral blood mononuclear cells (PBMCs) using flow cytometry, and circulating plasma NETs were measured using anti-myeloperoxidase-DNA, anti-citrullinated histone H3 and anti-elastase-DNA complex ELISAs. Serum-induced NET formation was assessed by incubating healthy neutrophils with serum from iSLE patients, SLE patients or HCs and visualizing NETs with fluorescence microscopy. RESULTS Proportions of LDGs and circulating plasma NETs were similarly elevated in iSLE and SLE patients compared with those in HCs. Furthermore, patients under HCQ treatment had lower proportions of LDGs than those without. Serum from iSLE and SLE patients similarly induced NET formation in healthy neutrophils. In iSLE patients, myeloperoxidase-DNA complexes were correlated with proportions of age-associated B-cells, memory B-cells and negatively with naïve B-cells, while we did not find associations between measures of NETs or serum-induced NET formation and interferon score or clinical parameters. CONCLUSION These results show that neutrophil dysfunction, including higher proportions of LDGs, and increased NET formation, already occur in iSLE, similar to SLE, despite differences in disease manifestations. Thereby, neutrophil dysfunction may contribute to sustained exposure to autoantigens and autoreactivity in early stages of SLE.
Collapse
Affiliation(s)
- Svenja Henning
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Tobias Reimers
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wayel Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Juan J Fierro
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Reproduction Group, Department of Microbiology and Parasitology, University of Antioquia UdeA, Medellin, Colombia
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Barbara Horvath
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Porcu C, Merkel N, Fusi-Schimdhauser T. Budd-Chiari Syndrome as an Initial Manifestation of Incomplete Systemic Lupus Erythematosus. Eur J Case Rep Intern Med 2024; 11:005015. [PMID: 39790846 PMCID: PMC11716300 DOI: 10.12890/2024_005015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025] Open
Abstract
This article describes a case of a 26-year-old female with a history of Evan's syndrome who presented with severe exertional dyspnoea and abdominal discomfort. The patient was diagnosed with chronic Budd-Chiari syndrome, a rare vascular disorder characterized by obstruction of the hepatic vein. We discuss the risk factors, the clinical manifestations, and diagnostic methods for Budd-Chiari syndrome, as well as the possible association with an underlying incomplete systemic lupus erythematosus. The importance of close follow-up and timely diagnosis for preventing disease progression and reducing mortality is emphasized. The article concludes by highlighting the need for further monitoring to identify any symptoms or signs suggesting a progression to complete lupus erythematosus. LEARNING POINTS Budd-Chiari syndrome can present as the initial manifestation of a broader autoimmune disorder such as incomplete systemic lupus erythematosus.Evan's syndrome, when associated with other thrombotic conditions like antiphospholipid syndrome, may indicate an underlying, evolving autoimmune process.Early recognition and management of incomplete lupus are crucial to prevent progression to a full-blown systemic lupus erythematosus and associated complications.
Collapse
Affiliation(s)
- Cecilia Porcu
- Department of Internal Medicine, Ospedale Regionale di Lugano EOC, Lugano, Switzerland
| | - Nathalie Merkel
- Department of Internal Medicine, Ospedale Regionale di Lugano EOC, Lugano, Switzerland
| | - Tanja Fusi-Schimdhauser
- Department of Internal Medicine, Ospedale Regionale di Lugano EOC, Lugano, Switzerland
- Department of Rehabilitation and Geriatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Henning S, Westra J, Roozendaal C, Haarsma-de Boer G, Fierro JJ, Horvath B, Bootsma H, de Leeuw K. Immunoglobulin G/immunoglobulin M autoantibody ratios in incomplete systemic lupus erythematosus. Scand J Rheumatol 2024; 53:207-216. [PMID: 38505972 DOI: 10.1080/03009742.2024.2321700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE Immunoglobulin G (IgG) autoantibodies in systemic lupus erythematosus (SLE) are considered pathogenic, whereas immunoglobulin M (IgM) autoantibodies may have protective effects. The aim of this study was to identify whether IgG/IgM autoantibody ratios differ between patients with incomplete systemic lupus erythematosus (iSLE), patients with SLE, and healthy controls (HCs), and whether IgG/IgM autoantibody ratios relate to progression from iSLE to SLE. METHOD This prospective cohort study included 34 iSLE patients, 41 SLE patients, and 11 HCs. IgG and IgM anti-dsDNA, anti-Ro52, and anti-Ro60 were measured by fluoro-enzyme immunoassay in serum samples obtained at baseline in all groups and in follow-up samples of up to 5 years for iSLE patients. Correlations between IgG/IgM autoantibody ratios, interferon signature, and clinical parameters were also assessed. RESULTS At baseline, IgG anti-dsDNA, anti-Ro52, anti-Ro60, and IgM anti-dsDNA were elevated in iSLE and SLE patients. IgG/IgM anti-dsDNA and anti-Ro52 ratios were similar between groups, while IgG/IgM anti-Ro60 ratios were significantly elevated in iSLE and SLE patients compared to HCs. IgG/IgM autoantibody ratios were not correlated with interferon signature or clinical parameters. IgG/IgM ratios at baseline were similar and remained relatively stable during a median follow-up of 18 months in non-progressors and six iSLE patients who progressed to SLE. CONCLUSION IgG anti-dsDNA, anti-Ro52, anti-Ro60, and IgM anti-dsDNA were elevated in iSLE and SLE patients, which was not apparent from the respective IgG/IgM ratios only. IgG/IgM autoantibody ratios remained relatively stable over up to 5 years in iSLE non-progressors and six patients who progressed to SLE.
Collapse
Affiliation(s)
- S Henning
- Departments of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, The Netherlands
| | - J Westra
- Departments of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, The Netherlands
| | - C Roozendaal
- Department of Laboratory Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - G Haarsma-de Boer
- Department of Laboratory Medicine, University Medical Centre Groningen, Groningen, The Netherlands
| | - J J Fierro
- Departments of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, The Netherlands
- Reproduction Group, Department of Microbiology and Parasitology, University of Antioquia UdeA, Medellin, Colombia
| | - B Horvath
- Departments of Dermatology, University Medical Centre Groningen, Groningen, The Netherlands
| | - H Bootsma
- Departments of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, The Netherlands
| | - K de Leeuw
- Departments of Rheumatology and Clinical Immunology, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Yennemadi AS, Keane J, Leisching G. Mitochondrial bioenergetic changes in systemic lupus erythematosus immune cell subsets: Contributions to pathogenesis and clinical applications. Lupus 2023; 32:603-611. [PMID: 36914582 PMCID: PMC10155285 DOI: 10.1177/09612033231164635] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The association of dysregulated metabolism in systemic lupus erythematosus (SLE) pathogenesis has prompted investigations into metabolic rewiring and the involvement of mitochondrial metabolism as a driver of disease through NLRP3 inflammasome activation, disruption of mitochondrial DNA maintenance, and pro-inflammatory cytokine release. The use of Agilent Seahorse Technology to gain functional in situ metabolic insights of selected cell types from SLE patients has identified key parameters that are dysregulated during disease. Mitochondrial functional assessments specifically can detect dysfunction through oxygen consumption rate (OCR), spare respiratory capacity, and maximal respiration measurements, which, when coupled with disease activity scores could show potential as markers of disease activity. CD4+ and CD8 + T cells have been assessed in this way and show that oxygen consumption rate, spare respiratory capacity, and maximal respiration are blunted in CD8 + T cells, with results not being as clear cut in CD4 + T cells. Additionally, glutamine, processed by mitochondrial substrate level phosphorylation is emerging as a key role player in the expansion and differentiation of Th1, Th17, ϒδ T cells, and plasmablasts. The role that circulating leukocytes play in acting as bioenergetic biomarkers of diseases such as diabetes suggests that this may also be a tool to detect preclinical SLE. Therefore, the metabolic characterization of immune cell subsets and the collection of metabolic data during interventions is also essential. The delineation of the metabolic tuning of immune cells in this way could lead to novel strategies in treating metabolically demanding processes characteristic of autoimmune diseases such as SLE.
Collapse
Affiliation(s)
- Anjali S Yennemadi
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Gina Leisching
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Elmgren J, Nyberg F. Clinical aspects of cutaneous lupus erythematosus. Front Med (Lausanne) 2023; 9:984229. [PMID: 36698816 PMCID: PMC9868707 DOI: 10.3389/fmed.2022.984229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Lupus erythematosus (LE) is an autoimmune inflammatory disease with a wide clinical spectrum from life-threatening multi-organ inflammation in systemic lupus erythematosus (SLE) to limited skin disease in cutaneous LE (CLE). The etiology of CLE is still not fully understood but a multifactorial genesis with genetic predisposition and certain environmental factors as triggers for the development are generally accepted features. Lesions can be induced and aggravated by UV-irradiation and smoking is linked to more severe forms of skin disease and to co-morbidity. Drugs, including many common medicines like antihypertensives, are known to induce subacute CLE (SCLE). The mechanisms involved have recently been shown to be part of the IFN-I pathway and new, specific treatments are currently in clinical trials. CLE is currently classified in subtypes based on clinical presentation and duration into acute CLE (ACLE), SCLE, and chronic CLE (CCLE). Distinct subtypes can be seen in individual patients or coexist within the same patient. Because of the confluent and overlapping picture between these subsets, serology, and histopathology constitute an important role guiding towards correct diagnose and there is ongoing work to update the classification. The Cutaneous Lupus Area Severity Index (CLASI) is a validated tool to measure activity and damage both in clinical trials but also for the clinician to evaluate treatment and follow the course of the disease among patients. CLE is known to have substantial impact on the life of those affected. Several tools have been proposed to measure QoL in these patients, currently Skindex-29 is probably the most used. Patient education is an important part of prevention of flares, including UV-protection and smoking cessation. First-line treatment includes topical corticosteroids as well as topical calcineurin inhibitors with the addition of systemic treatment with antimalarials in more severe or therapy resistant cases. Treatment specifically targeting CLE has been lacking, however novel potential therapies are in later phase clinical trials. In this review we aim to describe the different subsets of the cutaneous form in LE with focus on clinical aspects.
Collapse
Affiliation(s)
- Julia Elmgren
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden,Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden,*Correspondence: Julia Elmgren,
| | - Filippa Nyberg
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden,Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Wang L, Lu M, Li W, Fan R, Wen S, Xiao W, Lin Y. Significance of circRNAs as biomarkers for systemic lupus erythematosus: a systematic review and meta-analysis. J Int Med Res 2022; 50:3000605221103546. [PMID: 35796516 PMCID: PMC9274425 DOI: 10.1177/03000605221103546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective To comprehensively evaluate the significance of circular RNAs (circRNAs) as
potential diagnostic biomarkers for systemic lupus erythematosus (SLE) via
pooled analyses of data from published studies that focussed on the
association between circRNAs and SLE. Methods The systematic review and meta-analysis protocol was registered in PROSPERO
(registration No. CRD42021229383). Relevant studies published before 3 April
2022 were selected to verify the relationship between circRNA expression
levels and SLE. Extracted data were analysed using a random-effects model
with Meta-DiSc 1.4 and Stata 16 software. Transcription factors related to
hsa_circ_0000479 and its parental gene were extracted from the TRCirc and
hTFtarget databases, respectively. Results A total of 10 studies, involving 438 patients with SLE and 434 controls, were
included in the meta-analysis. The pooled sensitivity, specificity, and
diagnostic odds ratio of circRNAs in detecting SLE were 0.66 (95% confidence
interval [CI] 0.63, 0.70), 0.79 (95% CI 0.76, 0.82), and 10.80 (95% CI 6.58,
17.73), respectively. The area under the summary receiver operating
characteristic curve was 0.8366. Conclusions Meta-analysis of pooled data indicated a moderate accuracy of circRNAs in
diagnosing SLE. The exact diagnostic value of circRNAs and the mechanisms of
interaction between circRNAs and their parental genes should be confirmed in
further studies.
Collapse
Affiliation(s)
- Luyuan Wang
- Department of Dermatology and Venerology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Department of Dermatology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Mengting Lu
- Department of Dermatology and Venerology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.,Department of Dermatology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wenyu Li
- Department of Dermatology and Venerology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Runge Fan
- Department of Dermatology and Venerology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Sijian Wen
- Department of Dermatology and Venerology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wen Xiao
- Department of Dermatology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Youkun Lin
- Department of Dermatology and Venerology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
8
|
Zhong Y, Zhang W, Hong X, Zeng Z, Chen Y, Liao S, Cai W, Xu Y, Wang G, Liu D, Tang D, Dai Y. Screening Biomarkers for Systemic Lupus Erythematosus Based on Machine Learning and Exploring Their Expression Correlations With the Ratios of Various Immune Cells. Front Immunol 2022; 13:873787. [PMID: 35757721 PMCID: PMC9226453 DOI: 10.3389/fimmu.2022.873787] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune illness caused by a malfunctioning immunomodulatory system. China has the second highest prevalence of SLE in the world, from 0.03% to 0.07%. SLE is diagnosed using a combination of immunological markers, clinical symptoms, and even invasive biopsy. As a result, genetic diagnostic biomarkers for SLE diagnosis are desperately needed. Method From the Gene Expression Omnibus (GEO) database, we downloaded three array data sets of SLE patients' and healthy people's peripheral blood mononuclear cells (PBMC) (GSE65391, GSE121239 and GSE61635) as the discovery metadata (nSLE = 1315, nnormal = 122), and pooled four data sets (GSE4588, GSE50772, GSE99967, and GSE24706) as the validate data set (nSLE = 146, nnormal = 76). We screened the differentially expressed genes (DEGs) between the SLE and control samples, and employed the least absolute shrinkage and selection operator (LASSO) regression, and support vector machine recursive feature elimination (SVM-RFE) analyze to discover possible diagnostic biomarkers. The candidate markers' diagnostic efficacy was assessed using the receiver operating characteristic (ROC) curve. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) was utilized to confirm the expression of the putative biomarkers using our own Chinese cohort (nSLE = 13, nnormal = 10). Finally, the proportion of 22 immune cells in SLE patients was determined using the CIBERSORT algorithm, and the correlations between the biomarkers' expression and immune cell ratios were also investigated. Results We obtained a total of 284 DEGs and uncovered that they were largely involved in several immune relevant pathways, such as type І interferon signaling pathway, defense response to virus, and inflammatory response. Following that, six candidate diagnostic biomarkers for SLE were selected, namely ABCB1, EIF2AK2, HERC6, ID3, IFI27, and PLSCR1, whose expression levels were validated by the discovery and validation cohort data sets. As a signature, the area under curve (AUC) values of these six genes reached to 0.96 and 0.913, respectively, in the discovery and validation data sets. After that, we checked to see if the expression of ABCB1, IFI27, and PLSCR1 in our own Chinese cohort matched that of the discovery and validation sets. Subsequently, we revealed the potentially disturbed immune cell types in SLE patients using the CIBERSORT analysis, and uncovered the most relevant immune cells with the expression of ABCB1, IFI27, and PLSCR1. Conclusion Our study identified ABCB1, IFI27, and PLSCR1 as potential diagnostic genes for Chinese SLE patients, and uncovered their most relevant immune cells. The findings in this paper provide possible biomarkers for diagnosing Chinese SLE patients.
Collapse
Affiliation(s)
- Yafang Zhong
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Wei Zhang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaoping Hong
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yumei Chen
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Shengyou Liao
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Xu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Gang Wang
- Department of Nephrology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen Guangming New District Hospital, Shenzhen, China
| | - Dongzhou Liu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
9
|
Martin Calderon L, Pope JE. Precursors to Systemic Sclerosis and Systemic Lupus Erythematosus: From Undifferentiated Connective Tissue Disease to the Development of Identifiable Connective Tissue Diseases. Front Immunol 2022; 13:869172. [PMID: 35603174 PMCID: PMC9118990 DOI: 10.3389/fimmu.2022.869172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
The pathogenesis of connective tissue diseases (CTDs), such as systemic lupus erythematosus (SLE) and systemic sclerosis (SSc), is characterized by derangements of the innate and adaptive immune system, and inflammatory pathways leading to autoimmunity, chronic cytokine production, and chronic inflammation. The diagnosis of these diseases is based on meeting established criteria with symptoms, signs and autoantibodies. However, there are pre-clinical states where criteria are not fulfilled but biochemical and autoimmune derangements are present. Understanding the underlying processes responsible for disease pathogenesis in pre-clinical states, which place patients at increased risk for the development of established connective tissue diseases, represents an opportunity for early identification and potentially enables timely treatment with the goal of limiting disease progression and improved prognosis. This scoping review describes the role of the innate and adaptive immune responses in the pre-clinical states of undifferentiated CTD at risk for SSc and prescleroderma, the evolution of antibodies from nonspecific to specific antinuclear antibodies prior to SLE development, and the signaling pathways and inflammatory markers of fibroblast, endothelial, and T cell activation underlying immune dysregulation in these pre-clinical states.
Collapse
Affiliation(s)
- Leonardo Martin Calderon
- Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Janet E Pope
- Division of Rheumatology, St. Joseph's Health Care, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
10
|
Sternhagen E, Bettendorf B, Lenert A, Lenert PS. The Role of Clinical Features and Serum Biomarkers in Identifying Patients with Incomplete Lupus Erythematosus at Higher Risk of Transitioning to Systemic Lupus Erythematosus: Current Perspectives. J Inflamm Res 2022; 15:1133-1145. [PMID: 35210816 PMCID: PMC8863324 DOI: 10.2147/jir.s275043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Discovery of antinuclear antibodies (ANA) enabled earlier diagnosis of systemic lupus erythematosus (SLE) and other ANA+ connective tissue diseases (CTD). Rheumatologists increasingly encounter high referral volume of ANA+ patients. It has been estimated that only a small percentage of these patients will eventually transition to either SLE or other specified CTD. Incomplete lupus erythematosus (ILE) has been defined as a subset of patients who have some SLE-specific clinical manifestations but do not meet currently accepted classification criteria for SLE. Several studies have been performed with the goal of identifying clinical features, serum and tissue biomarkers that can distinguish those patients with ILE at risk of transitioning to SLE from those who will not. Increased autoantibody diversity, presence of anti-double-stranded DNA (dsDNA) antibodies, high expression of type I and type II interferon (IFN)-gene products, increased serum levels of B-cell-activating factor of the TNF family (BAFF), and certain serum cytokines and complement products have been identified as markers with positive predictive value, particularly when combined together. Once this patient population is better characterized biochemically, clinical trials should be considered with the primary objective to completely halt or slow down the transition from ILE to SLE. Hydroxychloroquine (HCQ) appears to be a promising agent due to its good tolerability and low toxicity profile and open-label studies in ILE patients have already shown its ability to delay the onset of SLE. Other therapeutics, like those targeting abnormal type I and type II IFN-signatures, B-cell specific signaling pathways, complement activation pathways and high BAFF levels should also be evaluated, but the risk to benefit ratio must be carefully determined before they can be considered.
Collapse
Affiliation(s)
- Erin Sternhagen
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Brittany Bettendorf
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Aleksander Lenert
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Petar S Lenert
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
- Correspondence: Petar S Lenert, Clinical Professor of Medicine, C428-2GH, 200 Hawkins Drive, Iowa City, Iowa City, 52242, USA, Email
| |
Collapse
|
11
|
Rubio J, Kyttaris VC. Measuring IFN activity in suspected SLE: a valuable step? Expert Rev Clin Immunol 2021; 17:545-548. [PMID: 33827358 DOI: 10.1080/1744666x.2021.1912597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jose Rubio
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|