1
|
Peng M, Luo T, Weng X, Dong Y, Xie Y, Huang S, Liang N, Wen S, Zhai Y, Xie Y, Chen Y. A retrospective analysis on maternal and neonatal outcomes in pSS/AITD pregnancies. Sci Rep 2025; 15:3437. [PMID: 39870646 PMCID: PMC11772809 DOI: 10.1038/s41598-024-83937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
The combined impact of concurrent primary Sjögren's syndrome (pSS) and autoimmune thyroid disease (AITD) on pregnancy outcomes remains underreported. A retrospective analysis was conducted on 115 pregnant patients diagnosed with pSS and delivering at the Third Affiliated Hospital of Guangzhou Medical University from January 2009 to July 2023. The effects of AITD on maternal and neonatal outcomes were examined and compared to a control group without AITD. In the group with pSS and AITD, the pregnancy loss rate was significantly higher than in the non-AITD group (P = 0.015), primarily reflected in the increased rate of neonatal death (P = 0.029). The proportion of term births and vaginal deliveries in the AITD group was notably reduced compared to the non-AITD group (54% vs. 81.5%; 16.0% vs. 41.5%; P = 0.001 and P = 0.003, respectively). No significant differences were observed in other maternal pregnancy outcomes, including induced abortion, spontaneous abortion, therapeutic abortion, and premature delivery (P > 0.05). The average birth weight of newborns in the pSS with AITD group was significantly lower than in the pSS without AITD group (2587.70 ± 720.50 g vs. 2812.54 ± 495.30 g, P < 0.001). Additionally, the rate of low-birth-weight infants in the pSS with AITD group was higher than in the pSS without AITD group (39.0% vs. 19.7%, P = 0.032). However, no significant differences were found between the two groups in the rates of fetal death, neonatal live birth, and fetal distress (P > 0.05). These results emphasize the importance of monitoring and managing thyroid health during pregnancy to optimize maternal and neonatal outcomes. Further exploration is essential to unravel the precise mechanisms through which AITD impacts fetal growth and to identify potential interventions to mitigate these effects.
Collapse
Affiliation(s)
- Miaoguan Peng
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510170, China
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510170, China
| | - Taizhen Luo
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Xiaoshi Weng
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yanmei Dong
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yijuan Xie
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Siqi Huang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Naifeng Liang
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Clinical College of Guangzhou Medical University, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Shiyun Wen
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Clinical College of Guangzhou Medical University, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yaojie Zhai
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Clinical College of Guangzhou Medical University, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| | - Yuyi Chen
- Department of Obstetrics, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
2
|
Ma D, Feng Y, Lin X. Immune and non-immune mediators in the fibrosis pathogenesis of salivary gland in Sjögren's syndrome. Front Immunol 2024; 15:1421436. [PMID: 39469708 PMCID: PMC11513355 DOI: 10.3389/fimmu.2024.1421436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sjögren's syndrome (SS) or Sjögren's disease (SjD) is a systemic autoimmune disease clinically manifested as sicca symptoms. This disease primarily impacts the functionality of exocrine glands, specifically the lacrimal and salivary glands (SG). SG fibrosis, an irreversible morphological change, is a severe consequence that occurs in the later stages of the disease due to sustained inflammation. However, the mechanism underlying SG fibrosis in SS remains under-investigated. Glandular fibrosis may arise from chronic sialadenitis, in which the interactions between infiltrating lymphocytes and epithelial cells potentially contributes to fibrotic pathogenesis. Thus, both immune and non-immune cells are closely involved in this process, while their interplays are not fully understood. The molecular mechanism of tissue fibrosis is partly associated with an imbalance of immune responses, in which the transforming growth factor-beta (TGF-β)-dependent epithelial-mesenchymal transition (EMT) and extracellular matrix remodeling are recently investigated. In addition, viral infection has been implicated in the pathogenesis of SS. Viral-specific innate immune response could exacerbate the autoimmune progression, resulting in overt inflammation in SG. Notably, post-COVID patients exhibit typical SS symptoms and severe inflammatory sialadenitis, which are positively correlated with SG damage. In this review, we discuss the immune and non-immune risk factors in SG fibrosis and summarize the evidence to understand the mechanisms upon autoimmune progression in SS.
Collapse
Affiliation(s)
- Danbao Ma
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| |
Collapse
|
3
|
Gu X, Chen Y, Cao K, Tu M, Liu W, Ju J. Therapeutic landscape in systemic lupus erythematosus: mtDNA activation of the cGAS-STING pathway. Int Immunopharmacol 2024; 133:112114. [PMID: 38652968 DOI: 10.1016/j.intimp.2024.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Mitochondrial DNA (mtDNA) serves as a pivotal immune stimulus in the immune response. During stress, mitochondria release mtDNA into the cytoplasm, where it is recognized by the cytoplasmic DNA receptor cGAS. This activation initiates the cGAS-STING-IRF3 pathway, culminating in an inflammatory response. The cGAS-STING pathway has emerged as a critical mediator of inflammatory responses in microbial infections, stress, autoimmune diseases, chronic illnesses, and tissue injuries. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by connective tissue involvement across various bodily systems. Its hallmark is the production of numerous autoantibodies, which prompt the immune system to target and damage the body's own tissues, resulting in organ and tissue damage. Increasing evidence implicates the cGAS-STING pathway as a significant contributor to SLE pathogenesis. This article aims to explore the role of the mtDNA-triggered cGAS-STING pathway and its mechanisms in SLE, with the goal of providing novel insights for clinical interventions.
Collapse
Affiliation(s)
- Xiaotian Gu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Yong Chen
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Kunyu Cao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Miao Tu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wan Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Jiyu Ju
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
4
|
Zhong W, Zhang H, Ran H. Advances in imaging of the lacrimal gland in Sjögren's syndrome: A narrative review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:68-77. [PMID: 37907965 DOI: 10.1002/jcu.23596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Due to lymphocytic infiltration of the salivary and lacrimal glands, Sjogren's syndrome (SS), a systemic autoimmune illness that mostly affects the exocrine glands, causes dry mouth (xerostomia) and dry eyes (xerophthalmia). Additionally, SS is associated with various comorbidities such as cardiovascular diseases, infections, musculoskeletal diseases, and cancers. Among patients with SS, xerophthalmia frequently arises as a complication, leading to insufficient tear production or rapid tear evaporation, thereby causing discomfort, irritation, and a gritty sensation in the eyes. This article aims to examine recent advancements in the imaging of the lacrimal gland in Sjögren's syndrome and briefly discusses the utilization of various imaging examinations for the lacrimal gland in this particular disease.
Collapse
Affiliation(s)
- Wenxing Zhong
- Department of Ultrasonography, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Ultrasonography, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Ran
- Department of Ultrasonography, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Nascimento Da Conceicao V, Sun Y, Chai X, Ambrus JL, Mishra BB, Singh BB. Metformin-induced activation of Ca 2+ signaling prevents immune infiltration/pathology in Sjogren's syndrome-prone mouse models. J Transl Autoimmun 2023; 7:100210. [PMID: 37711153 PMCID: PMC10497794 DOI: 10.1016/j.jtauto.2023.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
Immune cell infiltration and glandular dysfunction are the hallmarks of autoimmune diseases such as primary Sjogren's syndrome (pSS), however, the mechanism(s) is unknown. Our data show that metformin-treatment induces Ca2+ signaling that restores saliva secretion and prevents immune cell infiltration in the salivary glands of IL14α-transgenic mice (IL14α), which is a model for pSS. Mechanistically, we show that loss of Ca2+ signaling is a major contributing factor, which is restored by metformin treatment, in IL14α mice. Furthermore, the loss of Ca2+ signaling leads to ER stress in salivary glands. Finally, restoration of metformin-induced Ca2+ signaling inhibited the release of alarmins and prevented the activation of ER stress that was essential for immune cell infiltration. These results suggest that loss of metformin-mediated activation of Ca2+ signaling prevents ER stress, which inhibited the release of alarmins that induces immune cell infiltration leading to salivary gland dysfunction observed in pSS.
Collapse
Affiliation(s)
- Viviane Nascimento Da Conceicao
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Xiufang Chai
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Julian L. Ambrus
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14203, USA
| | - Bibhuti B. Mishra
- Department of Developmental Dentistry, School of Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Brij B. Singh
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Marinkovic M, Tran ON, Wang H, Abdul-Azees P, Dean DD, Chen XD, Yeh CK. Extracellular matrix turnover in salivary gland disorders and regenerative therapies: Obstacles and opportunities. J Oral Biol Craniofac Res 2023; 13:693-703. [PMID: 37719063 PMCID: PMC10502366 DOI: 10.1016/j.jobcr.2023.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
Salivary gland (SG) extracellular matrix (ECM) has a major influence on tissue development, homeostasis, and tissue regeneration after injury. During aging, disease, and physical insult, normal remodeling of the SG microenvironment (i.e. ECM) becomes dysregulated, leading to alterations in matrix composition which disrupt tissue architecture/structure, alter cell activity, and negatively impact gland function. Matrix metalloproteinases (MMPs) are a large and diverse family of metalloendopeptidases which play a major role in matrix degradation and are intimately involved in regulating development and cell function; dysregulation of these enzymes leads to the production of a fibrotic matrix. In the SG this altered fibrotic ECM (or cell microenvironment) negatively impacts normal cell function and the effectiveness of gene and stem cell therapies which serve as a foundation for many SG regenerative therapies. For this reason, prospective regenerative strategies should prioritize the maintenance and/or restoration of a healthy SG ECM. Mesenchymal stem cells (MSCs) have great potential for mitigating damage to the SG microenvironment by ameliorating inflammation, reducing fibrosis, and repairing the damaged milieu of extracellular regulatory cues, including the matrix. This review addresses our current understanding of the impact of aging and disease on the SG microenvironment and suggests critical deficiencies and opportunities in ECM-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
| | - Olivia N. Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Parveez Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
| | - David D. Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, 78229-4404, USA
| |
Collapse
|
7
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Li F, Lu J, Shi X, Li D, Zhou T, Jiang T, Wang S. Effect of adipose tissue-derived stem cells therapy on clinical response in patients with primary Sjogren's syndrome. Sci Rep 2023; 13:13521. [PMID: 37598237 PMCID: PMC10439962 DOI: 10.1038/s41598-023-40802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
The purpose of this trial was to clinically assess the effect and safety of Adipose Tissue-derived Stem Cells (ADSCs) treatment on primary Sjogren's Syndrome (pSS). In this 6-month randomized, triple-blind, placebo-controlled clinical trial, pSS patients were randomly assigned to two groups. After demographic characteristics and clinical examination were achieved, local injection of ADSCs into bilateral glands was performed with patients in ADSCs group (n = 35) and placebo solution was used for another group (n = 39) at three time points. Patients were followed up at 1-, 3- and 6-month. At each visit, studies of clinical and laboratory outcomes, as well as subjective symptoms, were conducted. A total of 74 subjects who met the including criteria were allocated in two groups and eventually 64 subjects (86.5%) completed the treatments and the follow-up assessments. Secretion of salivary and lachrymal glands were significantly improved in 3-month (P < 0.05). A great improvement of European League Against Rheumatism Sjögren's Syndrome Disease Activity Index (ESSDAI) was found after ADSCs treatment with intergroup comparison from baseline to follow-up (P < 0.05). There is also a significant difference of European Alliance of Associations for Rheumatology SS Patient Reported Index (ESSPRI) between the two groups in the follow-up (P < 0.05). A significant abatement of IgG, IgM, C3, C4 and ESR between two groups was observed in part of follow-up time points (P < 0.05). The ADSCs therapy can provide relief of oral and eye's dryness in our trial in a short time and has potential improvement of subjective and systemic syndromes of pSS.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Ophthalmology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Junhui Lu
- Department of Rheumatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Xinlian Shi
- Department of Stomatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Dongya Li
- Department of Stomatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Tingting Zhou
- Department of Stomatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Tianqi Jiang
- Department of Stomatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Shengming Wang
- Department of Stomatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China.
| |
Collapse
|